Skip to main content
  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

  • Home
  • About this Journal
    • Editorial Board
    • General Statistics
    • Information for Advertisers
    • Author Reprints
    • Commercial Reprints
    • Customer Service and Ordering Information
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • AHA Guidelines and Statements
    • Advances in Genetics
    • Bootcamp Resources
    • Clinical Genomic Cases
    • Methods in Genetics and Clinical Interpretation
    • Podcast Archive
  • Resources
    • Instructions for Authors
      • Accepted Manuscripts
      • Revised Manuscripts
    • → Article Types
    • → General Preparation Instructions
    • → Research Guidelines
    • → How to Submit a Manuscript
    • Journal Policies
    • Permissions and Rights Q&A
    • Submission Sites
    • AHA Journals RSS Feeds
    • International Users
    • AHA Newsroom
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association

  • My alerts
  • Sign In
  • Join

  • Advanced search

Header Publisher Menu

  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

Circulation: Genomic and Precision Medicine

  • My alerts
  • Sign In
  • Join

  • Home
  • About this Journal
    • Editorial Board
    • General Statistics
    • Information for Advertisers
    • Author Reprints
    • Commercial Reprints
    • Customer Service and Ordering Information
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • AHA Guidelines and Statements
    • Advances in Genetics
    • Bootcamp Resources
    • Clinical Genomic Cases
    • Methods in Genetics and Clinical Interpretation
    • Podcast Archive
  • Resources
    • Instructions for Authors
    • → Article Types
    • → General Preparation Instructions
    • → Research Guidelines
    • → How to Submit a Manuscript
    • Journal Policies
    • Permissions and Rights Q&A
    • Submission Sites
    • AHA Journals RSS Feeds
    • International Users
    • AHA Newsroom
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
Editorial

Noncoding Genetic Variation and Gene Expression

Deciphering the Molecular Drivers of Genome-Wide Association Study Signals in Atrial Fibrillation

Jason D. Roberts
Download PDF
https://doi.org/10.1161/CIRCGEN.118.002109
Circ Genom Precis Med. 2018;11:e002109
Originally published March 15, 2018
Jason D. Roberts
From the Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics

Jump to

  • Article
    • Sources of Funding
    • Disclosures
    • Footnotes
    • References
  • Info & Metrics
  • eLetters
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.


  • Editorials
  • atrial appendage
  • atrial fibrillation
  • gene expression
  • genetics
  • quantitative trait loci

See Article by Hsu et al

Robust familial and large-scale population-based epidemiological studies have firmly established a heritable contribution to the risk of developing atrial fibrillation (AF).1–4 The underlying mechanisms responsible for this heritability are complex, with evidence supporting the involvement of both rare and common genetic variants.5,6 Although considerable progress has been made since the first genetic culprit for AF was identified in 2003, translating our improved genetic understanding into clinically actionable treatment strategies remains a vision rather than a reality.7,8 Leveraging insights gleaned from rare variants identified in familial AF cases may be limited by their generalizability to the greater AF population, whereas a major challenge faced with common variants identified through genome-wide association studies (GWAS) has been clarifying their functional relevance. Single nucleotide polymorphisms (SNPs) identified through GWAS have been predominantly nonprotein coding, leaving experts to hypothesize their mechanism of action.9

As the list of AF GWAS SNPs progressively expands, there is a mounting need to clarify their functional effects to translate their identification into clinically actionable tools.10,11 The predominant belief has been that these SNPs reside within regulatory regions that modulate expression of nearby (and potentially remote) genes. Genomic loci that associate with altered mRNA expression levels are referred to as expression quantitative trait loci (eQTLs), with the terms cis and trans indicating regulation of nearby and distant genes, respectively.12 Notably, regulation of gene expression varies across cell types, and hence eQTL values are tissue-specific, a notion highlighting the importance of evaluating disease-associated SNPs in a disease-relevant tissue context. Given the limited availability of many human tissue types, a large-scale National Institutes of …

View Full Text

American Heart Association Professional?

Log in with your Professional Heart Daily username and password. Not an American Heart Association Professional? Continue below.

Log in using your username and password

Enter your Circulation: Genomic and Precision Medicine username.
Enter the password that accompanies your username.
Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Back to top
Previous ArticleNext Article

This Issue

Circ Genom Precis Med
March 2018, Volume 11, Issue 3
  • Table of Contents
Previous ArticleNext Article

Jump to

  • Article
    • Sources of Funding
    • Disclosures
    • Footnotes
    • References
  • Info & Metrics

Article Tools

  • Print
  • Citation Tools
    Noncoding Genetic Variation and Gene Expression
    Jason D. Roberts
    Circ Genom Precis Med. 2018;11:e002109, originally published March 15, 2018
    https://doi.org/10.1161/CIRCGEN.118.002109

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
  • Article Alerts
    Log in to Email Alerts with your email address.
  • Save to my folders

Share this Article

  • Email

    Thank you for your interest in spreading the word on Circulation: Genomic and Precision Medicine.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Noncoding Genetic Variation and Gene Expression
    (Your Name) has sent you a message from Circulation: Genomic and Precision Medicine
    (Your Name) thought you would like to see the Circulation: Genomic and Precision Medicine web site.
  • Share on Social Media
    Noncoding Genetic Variation and Gene Expression
    Jason D. Roberts
    Circ Genom Precis Med. 2018;11:e002109, originally published March 15, 2018
    https://doi.org/10.1161/CIRCGEN.118.002109
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo

Related Articles

Cited By...

Subjects

  • Genetics
    • Genetic, Association Studies
    • Gene Expression & Regulation
  • Arrhythmia and Electrophysiology
    • Atrial Fibrillation

Circulation: Genomic and Precision Medicine

  • About Circ Genomic and Precision Medicine
  • Instructions for Authors
  • Guidelines and Statements
  • Permissions
  • Journal Policies
  • Email Alerts
  • Open Access Information
  • AHA Journals RSS
  • AHA Newsroom
Editorial Office Address:
200 Fifth Avenue, Suite 1020
Waltham, MA 02451 
E-mail: circ@circulationjournal.org
Information for:
  • Advertisers
  • Subscribers
  • Subscriber Help
  • Institutions / Librarians
  • Institutional Subscriptions FAQ
  • International Users
American Heart Association Learn and Live
National Center
7272 Greenville Ave.
Dallas, TX 75231

Customer Service

  • 1-800-AHA-USA-1
  • 1-800-242-8721
  • Local Info
  • Contact Us

About Us

Our mission is to build healthier lives, free of cardiovascular diseases and stroke. That single purpose drives all we do. The need for our work is beyond question. Find Out More about the American Heart Association

  • Careers
  • SHOP
  • Latest Heart and Stroke News
  • AHA/ASA Media Newsroom

Our Sites

  • American Heart Association
  • American Stroke Association
  • For Professionals
  • More Sites

Take Action

  • Advocate
  • Donate
  • Planned Giving
  • Volunteer
  • You're the Cure

Online Communities

  • AFib Support
  • Empowered to Serve
  • Garden Community
  • Patient Support Network
  • Professional Online Network

Follow Us:

  • Follow Circulation on Twitter
  • Visit Circulation on Facebook
  • Follow Circulation on Google Plus
  • Follow Circulation on Instagram
  • Follow Circulation on Pinterest
  • Follow Circulation on YouTube
  • Rss Feeds
  • Privacy Policy
  • Copyright
  • Ethics Policy
  • Conflict of Interest Policy
  • Linking Policy
  • Diversity
  • Careers

©2018 American Heart Association, Inc. All rights reserved. Unauthorized use prohibited. The American Heart Association is a qualified 501(c)(3) tax-exempt organization.
*Red Dress™ DHHS, Go Red™ AHA; National Wear Red Day ® is a registered trademark.

  • PUTTING PATIENTS FIRST National Health Council Standards of Excellence Certification Program
  • BBB Accredited Charity
  • Comodo Secured