Response to Letter by Ryan et al Regarding Article, “Do Hemochromatosis Mutations Protect Against Iron-Mediated Atherogenesis?”

Ryan et al propose another factor that may protect patients with hemochromatosis from atherosclerosis, namely, suppression of monocyte chemotactic protein-1 (MCP-1). To know how much of the antiatherogenic effects of hemochromatosis mutations is due to this suppression will require additional investigation. Lawless et al report that MCP-1 is low with the C282Y variant but increased with H63D. This appears consistent with the hypothesis, because some H63D cases have higher hepcidin expression. In H63D, hepcidin normalized against ferritin is low, but the higher absolute hepcidin concentrations may allow higher macrophage iron in this variant. As noted in my study, there is a variable impact of genotype on hepcidin expression. Genotype of subjects in a study to test the hypothesis would need to be determined; however, testing the hypothesis would not rely directly on showing an association of genotype with disease. The hypothesis implies that protection against atherogenesis is inversely proportional to hepcidin expression. In an epidemiological study, the hypothesis suggests that among those with any 1 of the number of iron-overloading genotypes, protection against atherogenesis would be seen as a function of the degree of life-long hepcidin downregulation.

In mice, the effects of Hfe^{-/-} on atherogenesis on an ApoE^{-/-} background may be informative on the question of the effects of Hfe loss and any changes in MCP-1 on atherogenesis. Loss of Hfe in mice increases their survival after infection with Salmonella typhimurium. Altered macrophage function associated with nutritionally low macrophage iron may also lessen atherogenesis in Hfe^{-/-} ApoE^{-/-} double-knockout animals (nutritional iron depletion, sufficient to lessen macrophage iron, diminishes atherosclerosis in the ApoE^{-/-} knockout mouse). In Hfe knockouts, resting macrophages express MCP-1, and infection with S typhimurium increases macrophage MCP-1. Hfe^{-/-} mice are protected from S typhimurium despite the expression of MCP-1. Further study will be required to determine whether these animals exhibit some protection against atherosclerosis as well.

Disclosures

None.

References

Response to Letter by Ryan et al Regarding Article, "Do Hemochromatosis Mutations Protect Against Iron-Mediated Atherogenesis?"
Jerome L. Sullivan

Circ Cardiovasc Genet. 2010;3:e4
doi: 10.1161/CIRCGENETICS.110.945212
Circulation: Cardiovascular Genetics is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 1942-325X. Online ISSN: 1942-3268

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circgenetics.ahajournals.org/content/3/2/e4

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Genetics can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Genetics is online at:
http://circgenetics.ahajournals.org//subscriptions/