Copy Number Variation Contributes to Sporadic and Familial Thoracic Aortic Aneurysms and Dissections

Nicole L. Glazer, PhD

Study Hypothesis
The genetic origins of thoracic aortic aneurysms and dissections (TAAD) are relatively unknown. Twenty percent of cases have similarly affected family members, but genes previously identified for familial TAAD have exhibited reduced penetrance and variable severity. The genes previously implicated in familial TAAD (ACTA2, MYH11, TGFBR1, TGFBR2) have all been found to be involved in vascular smooth muscle cell (SMC) contractility and adhesion. Copy number variations (CNVs) have been found previously to increase risk of several multifactorial diseases, such as autism and schizophrenia. The authors hypothesized that rare structural variants could contribute to risk of TAAD, and that such variants would be enriched with genes regulating SMC adhesion and contractility.

How Was the Hypothesis Tested?
Four hundred eighteen unrelated cases of sporadic TAAD (TAAD in patients not reporting a family history of vascular disease) served as the discovery cohort for the sporadic TAAD cases. The replication cohort consisted of an additional 387 unrelated cases with sporadic TAAD. All patients were non-Hispanic, of European descent, and had their condition confirmed by imaging. Patients aged <31 years were excluded because of higher prevalence of Mendelian disorders in this age group. The familial TAAD cohort consisted of 88 affected probands from families with multiple members who did not have a genetic mutation previously identified as the cause of their TAAD. Controls came from 5 publicly available data sets from the Database of Genotypes and Phenotypes and were confined to unrelated individuals of European descent aged >31 years with Illumina genotypes. Genotyping of cases was done using the Illumina HumanCNV370-Quad Bead Chip for the sporadic TAAD samples and the Illumina Human660W-Quad BeadChip for familial TAAD samples.

Principal Findings
In a genome-wide analysis of sporadic TAAD cases, a total of 2063 CNVs in 123 separate chromosomal regions were detected by both calling algorithms. Nine predicted CNVs was significantly increased in familial TAAD compared to sporadic TAAD (23% versus 13%, P=0.03).

Gene ontology, expression profiling, and network analysis found that TAAD-associated CNVs were enriched for genes that regulate cell adhesion or the actin cytoskeleton through interaction with the smooth muscle-specific isoforms of actin and myosin. Mutations in the genes encoding these proteins have previously been associated with familial TAAD. Enrichment of genes with these functions was replicated in both the familial and sporadic groups.
sporadic TAAD replication cohort and the familial TAAD cohort. The authors concluded that the findings support a common underlying mechanism for the pathogenesis of both familial and sporadic TAAD through which any one of multiple, individually rare variants can predispose to the disorder through disruption of SMC function, specifically cell adhesion and contraction.

Implications

Timely surgical repair of aneurysms can prevent death, but they often are asymptomatic until dissection. Determining the genetic origins of TAAD may allow for the prospective identification of patients at risk for TAAD and possibly prevent sudden death from the disease. These findings provide evidence that both familial and sporadic TAAD involve multiple rare CNVs that are enriched for genes involved in an interacting network that regulates vascular SMC adhesion and contractility.

Disclosures

None.
Copy Number Variation Contributes to Sporadic and Familial Thoracic Aortic Aneurysms and Dissections
Nicole L. Glazer

Circ Cardiovasc Genet. 2011;4:212-213
doi: 10.1161/CIRCGENETICS.111.960062
Circulation: Cardiovascular Genetics is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1942-325X. Online ISSN: 1942-3268

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circgenetics.ahajournals.org/content/4/2/212

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Cardiovascular Genetics_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Cardiovascular Genetics_ is online at:
http://circgenetics.ahajournals.org//subscriptions/