A Clinical Approach to Inherited Hypertrophy

The Use of Family History in Diagnosis, Risk Assessment, and Management

Kyla E. Dunn, MS, CGC; Colleen Caleshu, ScM, CGC; Allison L. Cirino, MS, CGC; Carolyn Y. Ho, MD; Euan A. Ashley, MRCP, DPhil

Left-ventricular hypertrophy is a common finding in clinical practice and the end result of a number of different disease processes. As such, distinguishing hypertrophy attributable to athletic training or chronic hypertension from more rare and potentially life-threatening genetic conditions, including hypertrophic cardiomyopathy (HCM), is of utmost clinical importance. This is true not only for the individual patient but also for the patient’s family members, who may be at risk when the cause is a heritable disease. We review how family history can be used in identifying inherited cardiac hypertrophy and in guiding ongoing management of the patient and the rest of the family. An in-depth, multigenerational family history has the potential to enhance every aspect of care, from establishing a diagnosis to devising a genetic testing strategy, interpreting genetic test results, and providing ongoing risk assessment for sudden cardiac death (SCD). We review that family history is not simply a static account of preexisting deaths and diagnoses, but a dynamic ongoing process incorporating new and valuable insights from family medical records, clinical cardiology evaluations, genetic testing, and visual analysis of the patient’s family tree. Such insights enable comprehensive clinical care for families affected by HCM.

Historical Context

Scientific understanding of inherited cardiac hypertrophy dates back to 1958, when British forensic pathologist Donald Teare1 published an evocative series of case histories. Several sudden deaths in unrelated young adults had revealed, on autopsy, asymmetrical left-ventricular (LV) hypertrophy accompanied by a bizarre and disorganized myocardium: the disease known today as HCM. In a brief addendum, Teare1 described a family with multiple afflicted members, including a sister and brother who had each died suddenly, one while running for a bus and the other while riding a bicycle. Teare and his colleagues2 would later devote an entire publication running for a bus and the other while riding a bicycle. Teare and his colleagues would later devote an entire publication to this family, tracing its history for 3 generations and performing cardiology evaluations of living family members. The resulting family pedigree (Figure 1) was the first to reveal HCM as a hereditary disease.

At the time, there was little understanding of heredity at a molecular level. By 1958, only 5 years had passed since Watson and Crick3 first revealed the physical structure of DNA, and a family pedigree remained the sole diagnostic tool for inherited disease.

Even in the current molecular era, more than 2 decades after the discovery that HCM is caused by genetic changes in the contractile apparatus of heart muscle cells, and with whole-genome sequencing on the clinical horizon, certain aspects of clinical care are guided by a traditional family tree and cannot be accomplished by any other method. Clinical practice guidelines recommend a multigenerational family history as part of the care of all individuals with cardiomyopathy—and, increasingly, time-saving tools make it easier for clinicians to incorporate a thorough family history into patient care. We now explore the role of family history in a clinical approach to LV hypertrophy.

Family History: Distinguishing Genetic Disease From Secondary LV Hypertrophy

Given the prevalence of hypertension in the adult population, and the popularity of competitive athletics among adolescents, it is common in cardiology practice to encounter patients with some degree of LV hypertrophy detected on ECG or noninvasive cardiac imaging studies. Most cases of mild hypertrophy can be confidently determined to be secondary. Nonetheless, a well-recognized phenotypic overlap exists with more rare and life-threatening disease processes, including HCM. Such cases can be particularly concerning to the clinician when the patient is a young athlete, at an age when SCD from HCM is most likely to occur.5–7

Clinical testing can offer clarity in some instances. Evidence of diastolic dysfunction, for example, can be useful in discriminating HCM from the athletic heart.8,9 As we and others have previously described, this intrinsic feature of HCM can be present in individuals genetically predisposed to the disease even when LV wall thickness is normal.10–15 Other classic features of HCM, but not of physiological hypertrophy, include asymmetrical septal hypertrophy,16–17 small or normal
LV cavity size, left atrial enlargement, anatomic abnormalities of the mitral valve or papillary muscles, and dynamic LV outflow tract obstruction. LV hypertrophy that regresses after detaining an athlete or controlling blood pressure suggests a secondary cause rather than primary HCM.

Despite these potential clues, patients can defy easy categorization. In ambiguous cases of LV hypertrophy, insights from family history may provide important clarity.

Illustrative Cases

Patients A and B were 18-year-old males referred for evaluation of mild LV hypertrophy. Both had normal mitral valve function and no evidence of LV outflow tract obstruction.

Patient A was suspected of having athlete’s heart with physiological hypertrophy, as he exercised intensely for up to 7 hours per day, 5 days per week. His ECG was distinctly abnormal, with deep inverted T-waves in the precordial leads and high voltage throughout. However, the specificity of these findings was reduced because substantial QRS voltage and inverted T-waves are more common among Black athletes.

Patient A’s maternal family history, however, was notable for 2 premature sudden cardiac deaths (SCDs) as shown in Figure 2A. His grandmother’s brother (individual II-7 in the family pedigree) had died suddenly at age 29 and his grandmother’s uncle (I-3) at age 35, raising suspicion for inherited cardiomyopathy. Echocardiograms were performed on the patient’s immediate family members to look for previously unrecognized disease. Evaluation showed both his teenage sisters (IV-2 and IV-3) to exhibit mild LV hypertrophy in the absence of any other explanation. His mother (III-2), who had hypertension, had LV hypertrophy as well. Furthermore, after a 3-month detraining period, Patient A had no regression of his cardiac hypertrophy. Given the cumulative weight of the evidence, driven by his family history, we diagnosed Patient A with HCM—revising the pedigree as shown in Figure 2B.

Patient B, by contrast, was not unusually athletic and had no known history of hypertension. He had recently experienced multiple episodes of syncope, one while playing basketball, raising concern that his LV hypertrophy was pathological and a sign of HCM with exercise-induced arrhythmias.

Patient B’s family history, however, contained no suggestion of SCD or significant cardiovascular disease (Figure 3). Accordingly, our suspicion for inherited cardiomyopathy was decreased. Twenty-four-hour ambulatory blood pressure monitoring was pursued and revealed a substantial burden of labile hypertension. Patient B’s family history had helped to guide us toward the true cause of his hypertrophy: occult hypertension.

It is worth emphasizing that a comprehensive family history was needed to ascertain the informative deaths in Patient A’s family. While it is standard practice for clinicians to inquire about a patient’s first-degree relatives (parents, siblings, and children), a truly informative assessment of inherited disease risk requires delving deeper into the family tree. Even among members of the same family, the clinical presentation of HCM can vary widely, and the diagnosis may have been missed in some relatives, particularly those who are asymptomatic with mild or even no associated health problems. What’s more, some genetically affected family members never develop LV hypertrophy—a phenomenon known as reduced penetrance. Clinical practice guidelines, therefore, recommend a careful 3-generation family history that extends at least to the patient’s second-degree relatives (grandparents, aunts, uncles, nieces, and nephews).

To get the most from a family history in clinical practice, it may be necessary to go beyond tallying preexisting deaths and diagnoses. Strategic clinical assessment of the patient’s close family members, triggered by the proband’s diagnosis with HCM or suspicion of familial disease, can add important insights to what is already known from static history (as it did with Patient A). Such directed evaluations serve 2 major purposes: (1) identifying family members with unrecognized clinical disease to initiate appropriate clinical care, and (2) providing key supportive evidence for a diagnosis of HCM in the original patient and, by extension, the family. For example, if an ECG reveals HCM in a patient’s parent, sibling, or child, then this shifts the patient’s a priori risk for HCM from 1 in
Based on disease prevalence in the general public, 24,25 to 1 in 2, based on the likelihood of inheriting an autosomal dominant disease.

Differential Diagnosis: Other Forms of Inherited LV Hypertrophy

Informative elements of a family history for a patient with LV hypertrophy are presented in Table 1. It is important to ascertain whether relatives have exhibited classic symptoms of HCM, such as shortness of breath, chest pain, presyncope, or syncope—particularly with exertion.6,7 Other key questions involve HCM’s more rare and serious consequences, including stroke, end-stage congestive heart failure, or SCD. Asking for details about cardiothoracic surgeries or other procedures family members have undergone can be important in distinguishing HCM from conditions such as coronary artery disease. Another essential line of inquiry involves accidental and unexpected deaths in the family, such as single-car accidents in which the family member was the driver, drownings, or sudden infant death syndrome. These events sometimes indicate a sudden cardiac arrest that has gone unrecognized.

Cardiac hypertrophy can result, too, from a wide range of genetic conditions that affect multiple organ systems (Table 2). A careful family history may, therefore, detect extracardiac features that help to make a diagnosis. Inheritance patterns can provide additional diagnostic clues: Danon disease and Fabry disease are both X-linked conditions, meaning that disease expression in carrier females may be subtle or absent.26 Father-to-son transmission would effectively rule out an X-linked condition.

Accurately distinguishing HCM from its mimics is important, given the significant differences in prognosis and treatment. Enzyme replacement therapy is available for Fabry disease and Pompe disease, for example.27 Anticipation of the likely need for heart transplantation may be warranted for Danon disease, which can progress rapidly to end-stage heart failure, particularly in adolescent males.28 In ambiguous cases, genetic testing can be of assistance. Genes for some of these syndromes are included on clinically available HCM genetic testing panels—facilitating simultaneous genetic testing for primary HCM and for multisystem diseases that include LV hypertrophy.

Family History: Managing HCM

Stratifying Risk for SCD

Given that HCM is the most common form of inherited LV hypertrophy, the remainder of this article will focus on the role of family history in managing HCM. Once a diagnosis has been established, the next important contribution of family history involves assessing a patient’s risk for SCD.

A family history of SCD is a major consideration when assessing an individual patient’s risk to determine whether an implantable cardioverter-defibrillator for primary prevention is appropriate.7,29 It is 1 of 6 major risk factors considered with previous cardiac arrest, LV thickness of 3 cm or greater, a history of unexplained syncope, nonsustained ventricular tachycardia on 48-hour Holter monitor, and abnormal blood pressure response to exercise.6,7 Although any history of premature SCD is concerning, deaths of greatest concern involve close family members, particularly when multiple family members have died.6,30 Careful scrutiny is often needed to determine which events constitute premature SCD attributable to HCM. Such events occur most frequently in adolescents and adults under age 35,7 suggesting that SCD in an elderly relative may be of less clinical concern—particularly given the higher likelihood of confounding comorbidities, most prominently coronary artery disease. Yet the risk for HCM-related cardiac arrest...
remains elevated throughout life, and published guidelines offer no easy algorithm or well-defined age cut-off for risk stratification. Gathering medical records and autopsy reports for suspicious deaths can be highly informative when available. If family members have been implanted with implantable cardioverter-defibrillators, then events that previously would have resulted in SCD may now register as appropriate shocks.

None of the risk factors for SCD is static—including family history. Family history should be updated at intervals, and patients are urged to contact the clinic with reports of new deaths, cardiac events, or diagnoses.

Managing Family Members
HCM is typically inherited in an autosomal dominant fashion, meaning that just 1 altered copy of a gene, inherited from just 1 parent, causes the disease. Although de novo genetic variants (brand new in the patient, not inherited from either parent) have been reported,31,32 the majority of HCM seems to be familial. A patient’s diagnosis, therefore, implies risk to other family members even in the absence of a clear family history, and clinical screening of relatives is appropriate. Immediate family members—parents, siblings, and children—each share half of the patient’s genes, creating a 50% chance that they carry the same disease-causing variant. A de novo genetic change initiates new familial disease, placing the patient’s family members—parents, siblings, and children—at risk.

Guidelines for the clinical management of these at-risk first-degree family members (Figure 4) include physical examination by a cardiologist familiar with HCM, echocardiography, and 12-lead ECG.4,7 Cardiac MRI, Holter monitoring, and exercise testing may also be beneficial in certain situations. Any family member involved in competitive sports and any family member experiencing symptoms also need evaluation—even if more distantly related to the patient with HCM.

Moreover, HCM shows age-dependent penetrance, meaning its features may emerge with time in someone previously without signs or symptoms. Cardiac evaluation should, therefore, be repeated at regular intervals over time. Evaluations should occur annually throughout puberty, when the first signs of HCM are most likely to appear, and every 3 to 5 years thereafter. The risk of developing HCM persists even past middle age,30 so unless genetic testing confirms that an at-risk relative has not inherited the family’s pathogenic variant, cardiac evaluation should be ongoing as outlined in Figure 4.

Family history can play an important role in individualizing these screening recommendations. Someone from a high-risk family with consistent development of heart failure or SCD may warrant more frequent monitoring because it is clear that his or her specific genetic milieu results in particularly grave consequences when an HCM-causing variant is present. Adult relatives who participate in competitive or high-intensity athletics may also warrant more frequent screening. For a family with early onset LV hypertrophy, childhood screening should start earlier than puberty.4,7,35

Family History: Pedigree Analysis
Successfully identifying at-risk individuals within a family tree requires integration of clinical history with basic laws of inheritance and probability.

Illustrative Case
The family of a 15-year-old patient with HCM is depicted in Figure 5. Figure 5A indicates the immediate family members at 50% risk for HCM based only on the patient’s diagnosis. In constructing a detailed, 3-generation pedigree, however, we discovered a family history of the disease that had previously been unrecognized: the patient’s mother’s cousin (II-6) had died suddenly in his 30s and was diagnosed with HCM on autopsy. Based on this new information, Figure 5B indicates additional at-risk family members who require ongoing cardiology screening because they are first-degree relatives of an affected patient.

The next level of analysis involves identifying obligate carriers: individuals who logically must carry the family’s HCM-causing genetic variant to explain the overall disease pattern within the family. Simple visual inspection of the pedigree reveals these at-risk individuals. In this case, the chain of family members that connects our patient to his mother’s affected cousin includes 3 obligate carriers (I-3, I-5, and II-4), each marked with a vertical bar in Figure 5C. Without each of these individuals having inherited and then passing on the disease-causing variant, the 2 known cases of HCM could not have occurred. These carrier individuals may have undiagnosed cardiomyopathy or, if they do not, are at risk to develop HCM in the future.
Immediate family members of an obligate carrier are at 50% risk to carry the predisposition to HCM, just like the brother of our initial patient (III-6); they too require ongoing cardiology screening. In Figure 5C, arrows indicate 2 such family members (I-6 and II-5) whose at-risk status we may not have recognized had we not drawn out and analyzed the pedigree.

Family History: Genetic Testing Strategy

Given the screening recommendations outlined above, a child at 50% risk of being predisposed to HCM will undergo up to 20 cardiology evaluations between the ages of 12 and 75. It would be ideal if these evaluations could be focused only on the family members who inherited a disease-causing genetic variant and are predisposed to develop HCM, instead of screening everyone at 50% risk. Genetic testing can help to provide this focus.

Two decades ago, a key role in the pathophysiology of HCM was attributed to the sarcomere: the assembly of proteins in each cardiac muscle cell that enables contraction (Figure 6). The first disease-causing variant to be discovered was in MYH7, the β-myosin heavy chain gene; since then the list of sarcomere-associated genes known to cause HCM has grown

Table 1. Patients With Left-ventricular Hypertrophy: Important Elements of a Family History

<table>
<thead>
<tr>
<th>Known cardiac diagnoses (request records)</th>
<th>Hypertrophy may be reported as an enlarged, strong, thick, or even athletic heart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of onset</td>
<td>Symptoms in a young, athletic person is typical of HCM</td>
</tr>
<tr>
<td></td>
<td>Onset before puberty suggests multiple genetic variants may be present</td>
</tr>
<tr>
<td>Chest pain</td>
<td>Particularly pain that improves during a lengthy exercise warm-up</td>
</tr>
<tr>
<td>Arrhythmia symptoms</td>
<td>Palpitations, syncope, or presyncope, particularly with exertion</td>
</tr>
<tr>
<td></td>
<td>Stroke (particularly at unusually young ages), abnormal blood clotting</td>
</tr>
<tr>
<td>Valve problems, heart murmurs</td>
<td>Heart failure symptoms</td>
</tr>
<tr>
<td></td>
<td>Exercise-induced asthma is a common misdiagnosis, particularly in children</td>
</tr>
<tr>
<td>Medications</td>
<td>Beta blockers, calcium channel blockers, and antiarrhythmic agents are frequently taken for HCM</td>
</tr>
<tr>
<td>Heart-related surgeries and procedures</td>
<td>Includes catheterization, endocardial biopsy, myectomy, mitral valve replacement, cardiac transplant</td>
</tr>
<tr>
<td>Cardiac devices</td>
<td>Implantable cardioverter-defibrillators (ICDs), pacemakers</td>
</tr>
<tr>
<td>Sudden cardiac death (request autopsy reports)</td>
<td>Particularly concerning < age 35 or in the documented absence of coronary artery disease</td>
</tr>
<tr>
<td></td>
<td>Obtain further details regarding deaths labeled as heart attack</td>
</tr>
<tr>
<td>Accidental/unexpected death, particularly</td>
<td>Single-car accidents in which the family member was the driver, drownings, SIDS deaths</td>
</tr>
<tr>
<td>in young individuals</td>
<td>Genetic testing (request laboratory results to verify interpretation)</td>
</tr>
<tr>
<td>Screening ECGs and echocardiograms</td>
<td>performed on at-risk family members (request records)</td>
</tr>
<tr>
<td>Features relevant to differential diagnosis</td>
<td>Learning disabilities/mental retardation</td>
</tr>
<tr>
<td></td>
<td>Noonan syndrome, Danon disease</td>
</tr>
<tr>
<td></td>
<td>Paresthesias</td>
</tr>
<tr>
<td></td>
<td>Fabry disease, transthyretin amyloidosis</td>
</tr>
<tr>
<td></td>
<td>Renal disease</td>
</tr>
<tr>
<td></td>
<td>Fabry disease, immunoglobulin light chain (primary) amyloidosis</td>
</tr>
<tr>
<td></td>
<td>Skeletal muscle weakness</td>
</tr>
<tr>
<td></td>
<td>Pompe disease, Danon disease, mitochondrial disorders</td>
</tr>
<tr>
<td></td>
<td>Liver pathology, skin bronzing</td>
</tr>
<tr>
<td></td>
<td>Hereditary hemochromatosis</td>
</tr>
<tr>
<td></td>
<td>Facial dysmorphology</td>
</tr>
<tr>
<td></td>
<td>Noonan syndrome</td>
</tr>
</tbody>
</table>

HCM indicates hypertrophic cardiomyopathy; and SIDS, sudden infant death syndrome.
to more than a dozen, with MYH7 and MYBPC3 (myosin-binding protein C) most frequently involved. Multigene panels containing the major genes associated with HCM are clinically available and used when the first affected family member undergoes genetic testing.

Family history is an important guide when deciding which family member should be tested first. In general, the best candidate is the person whose HCM was diagnosed at the youngest age or whose disease features are the most classic and severe. Notably, this may not be the patient who first presents to clinic. Testing the most affected family member is a well-established principle of medical genetics: it helps to minimize the chance of testing a phenocopy (someone whose LV hypertrophy is attributable solely to hypertension or intense athletic activity) and to maximize the chance that the person tested actually carries the familial predisposition to HCM. What’s more, the approach increases the likelihood of detecting all disease-causing genetic variants present in the family, as there may not be just 1. Approximately 5% of patients with HCM have been reported to carry 2 or more sarcomere gene variants (in the gene panels explored to date), and our appreciation of multigenic contribution is only likely to increase as new DNA sequencing technologies reach the clinic. Individuals with this higher genetic dosage may have earlier disease onset and worse prognosis, although it has been difficult to fully understand the impact of multiple variants attributable to phenotypic heterogeneity and the limited scale of previous studies. Notably, when a patient carries 2 disease-causing changes, it is possible that 1 was inherited from each parent. This emphasizes the importance of withholding judgment about which side of the family may be affected by HCM.

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Gene(s)</th>
<th>Gene Symbol</th>
<th>Locus</th>
<th>Phenotype</th>
<th>Inheritance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP kinase disease</td>
<td>AMP-activated protein kinase</td>
<td>PRKAG2</td>
<td>7q36.1</td>
<td>Cardiac hypertrophy, preexcitation</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>Familial amyloid disease</td>
<td>Transthyretin</td>
<td>TTR</td>
<td>18q12.1</td>
<td>Low voltage, severe cardiac hypertrophy, paresthesias</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>Noonan syndrome</td>
<td>Protein tyrosine phosphatase, nonreceptor type 11 (aka tyrosine phosphatase SHP2)</td>
<td>PTPN11</td>
<td>12q24.1</td>
<td>Short stature, facial dysmorphism, congenital heart defects, cardiac hypertrophy, skeletal anomalies, bleeding disorders, learning disabilities (variable)</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>Son of sevenless homolog 1</td>
<td>SOS1</td>
<td>2p22.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAF proto-oncogene serine/threonine-protein kinase</td>
<td>RAF1</td>
<td>3p25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabry disease</td>
<td>Alpha-galactosidase A</td>
<td>GLA</td>
<td>Xq22</td>
<td>Renal disease, paresthesias, cardiac hypertrophy. Females can manifest signs of disease</td>
<td>X linked</td>
</tr>
<tr>
<td>Danon disease</td>
<td>Lysosomal-associated membrane protein 2</td>
<td>LMP2</td>
<td>Xq24</td>
<td>Males present in childhood with cardiac hypertrophy, skeletal myopathy, mental retardation. Females can manifest signs of cardiomyopathy</td>
<td>X linked</td>
</tr>
<tr>
<td>Hereditary hemochromatosis</td>
<td>Hereditary hemochromatosis protein</td>
<td>HFE</td>
<td>6p21.3</td>
<td>Iron overload, cardiomyopathy, hypogonadotropic hypogonadism, arthropathy, hepatic fibrosis or cirrhosis, diabetes mellitus, progressive skin pigmentation/bronzing</td>
<td>Autosomal recessive</td>
</tr>
<tr>
<td>Pompe disease</td>
<td>Acid α-glucosidase (aka acid maltase)</td>
<td>GAA</td>
<td>17q25</td>
<td>Acid maltase deficiency (aka glycogen storage disease type II), infantile and juvenile/adult forms, skeletal myopathy, ventilatory failure, cardiac hypertrophy</td>
<td>Autosomal recessive</td>
</tr>
</tbody>
</table>

Table 2. Diseases Mimicking Hypertrophic Cardiomyopathy on Echocardiography

What’s more, the approach increases the likelihood of detecting all disease-causing genetic variants present in the family, as there may not be just 1. Approximately 5% of patients with HCM have been reported to carry 2 or more sarcomere gene variants (in the gene panels explored to date), and our appreciation of multigenic contribution is only likely to increase as new DNA sequencing technologies reach the clinic. Individuals with this higher genetic dosage may have earlier disease onset and worse prognosis, although it has been difficult to fully understand the impact of multiple variants attributable to phenotypic heterogeneity and the limited scale of previous studies. Notably, when a patient carries 2 disease-causing changes, it is possible that 1 was inherited from each parent. This emphasizes the importance of withholding judgment about which side of the family may be affected by HCM. The reality is, it may be both.
Figure 5. An evolving hypertrophic cardiomyopathy (HCM) family history and careful pedigree assessment shift cardiology screening needs. A, Relatives needing screening based on initial diagnosis. Diagnosis of this 15-year-old patient (III-5, thick arrow) with HCM means his first-degree relatives (father II-3, mother II-4, and brother III-6; thin arrows) are each at 50% risk. B, Relatives needing screening based on initial plus a second diagnosis. When a second HCM diagnosis (II-6) is discovered in the patient’s maternal family history, this individual’s first-degree relatives (I-5, II-7, III-7, III-8, and III-9) also require cardiac screening. The patient’s father (II-3), not on the affected side of the family, is no longer considered at risk. C, Additional relatives need screening based on obligate carriers. Pedigree analysis identifies 3 obligate carriers (I-3, I-5, and II-4; marked with vertical line) connecting the individuals with HCM, including the patient’s mother. Each is at known risk for disease. Immediate family members of an obligate carrier are at 50% risk and also require screening (arrows added to I-6 and II-5). D, Genetic testing helps target screening to relatives definitively predisposed to HCM. In this family, several family members at 50% risk (II-7, III-6, III-7, and III-9) did not inherit the disease-causing variant; they and their descendants can be excused from further screening. By contrast, II-5 and I-6 test positive, newly revealing their children (II-8 and II-9) to be at 50% risk. Circles indicate females; squares, males; slash, deceased; +, genetic variant present; and −, genetic variant absent.
Initial genetic testing with a multigene panel will yield 1 of 3 results: negative, positive, or uncertain. A negative result is when testing fails to locate a disease-causing variant in any of the genes sequenced. For patients with a clinical diagnosis of HCM, testing is negative ≈40% to 50% of the time. This includes a range from ≈70% of patients without a family history to ≈30% to 40% of patients with a family history.

This imperfect capture is a sign that our understanding of HCM genetics remains incomplete, and a negative test result does not mean that a patient’s HCM is not hereditary. In truth, the result is simply not informative. Although detecting a disease-causing genetic variant can confidently rule in a diagnosis of HCM, failing to find such a variant cannot rule it out.

A positive test result, by contrast, is highly informative. It reveals a change in the patient’s DNA that is not found in the healthy human reference genomes used for comparison. Association between a genetic variant and disease is always probabilistic, however, leaving room for the possibility of false positives—and our level of confidence that a particular variant is disease-causing is based on the weight of the evidence. To be confident that a variant is pathogenic requires that it has been shown to definitively segregate with disease in a sufficient number of unrelated HCM families and is absent from healthy, ethnically matched controls. A positive result that it has been shown to definitively segregate with disease in a sufficient number of unrelated HCM families and is absent from healthy, ethnically matched controls. A positive result is when testing fails to locate a disease-causing variant in any of the genes sequenced. For patients with a clinical diagnosis of HCM, testing is negative ≈40% to 50% of the time. This includes a range from ≈70% of patients without a family history to ≈30% to 40% of patients with a family history.

Each individual’s genetic test result, whether positive or negative, must be considered probabilistic information. Therefore, genetic testing cannot definitively rule in or rule out the presence of a disease-causing variant. Instead, a positive result provides strong evidence that the specific variant is disease-causing, whereas a negative result suggests that the specific variant is not disease-causing. However, a negative result does not mean that the disease is not present. It simply means that the specific variant was not detected.

Figure 6. The cardiac sarcomere, highlighting protein products of genes involved in hypertrophic cardiomyopathy. Disease-causing variants in cardiac myosin-binding protein C (MYBPC3) and β-myosin heavy chain (MYH7) are most common, accounting for 20% to 45% and 15% to 20% of the disease, respectively. Cardiac troponin T type 2 (TNNT2) and troponin I type 3 (TNNT3) each account for <5%. Variation in other sarcomere genes is less frequent. Data from Ackerman et al.46

Family History: Interpreting Genetic Test Results of Uncertain Significance

The more we learn about the human genome, the clearer it is that we all have benign, rare alterations even within disease-causing genes.53,54 And scientific understanding in this area is moving quickly. Thus, it is not always clear whether a variant identified in an HCM-associated gene indeed contributes to HCM risk. For example, a genetic variant that is found in healthy individuals with a family history of HCM may not be disease-causing. In such cases, genetic testing can provide valuable information about the risk of developing HCM in family members.
to disease, or whether it may instead be part of the clinically inconsequential rare genetic variation present in every genome.

The fact that this normal variation exists leads to the most challenging genetic test result of all to emerge from a multi-gene panel: a variant of uncertain clinical significance (VUS). In these cases, the patient does have a genetic variant within an HCM-associated gene, but it is not clear that the variant is linked to disease. Hundreds of separate variants have so far been identified in patients with HCM, many of them private to a single family. Because of this remarkable genetic heterogeneity, HCM genetic testing frequently reveals a novel or poorly characterized genetic variant—one whose ability to cause disease is unknown.

A VUS cannot be used for predictive testing of unaffected family members, as the power of predictive testing lies in our confidence that the genetic variant we are testing for is very likely responsible for disease. When significant uncertainty exists, the danger is that we will mistakenly excuse someone who is actually at risk from clinical surveillance, only to have him or her later develop HCM, undiagnosed and untreated.

Family history, however, often holds the key to clarifying a variant’s role in disease. This is accomplished through a process known as segregation analysis. A genetic variant and a disease are said to cosegregate if found together, without exception, in every obligate carrier and affected family member tested. This evidence associating variant and disease suggests the variant may indeed be the underlying cause for the disease.

Testing healthy, at-risk family members for a VUS is typically not informative. Detecting a VUS in a healthy individual raises 2 mutually exclusive possibilities: (1) the variant is not responsible for the disease in the family, or (2) the family member is genetically predisposed to develop HCM but has not yet expressed overt clinical manifestations. Therefore, understanding of the variant’s pathogenicity is not advanced. For this reason, testing for a VUS should generally be limited to HCM-affected individuals and obligate carriers to determine whether it segregates with disease.

Careful phenotyping of additional family members, through ECG and echocardiogram, can add power to this process. The weight of the evidence provided by cosegregation increases as more affected family members test positive for the variant, and particularly when distantly related affected family members test positive. This is because it is possible to calculate the mathematical probability that all of these affected relatives would have inherited the same genetic variant simply by chance. The more distantly related the affected relatives are, the more likely it becomes that the cosegregation of variant and disease is attributable to the variant’s disease-causing role rather than to chance alone.

Illustrative Cases

Genetic testing of the patient in Figure 7 revealed a VUS in the MYH7 gene. Robust segregation analysis was possible in this family attributable to the multiple affected family members and obligate carriers known. Initial testing revealed that the patient’s 2 siblings with HCM (II-2 and III-4) harbored the same MYH7 variant. However, the likelihood that any 3 siblings will have inherited the same genetic variant simply by chance is 1 in 8. Further testing of the patient’s affected niece (IV-3) and obligate carrier mother (II-4) revealed that they too carried the variant, strengthening the evidence for pathogenicity. If the patient’s aunt (II-9) were to test positive, then this would provide more evidence still (with a less than 1% likelihood that these affected family members would all carry the variant by chance alone).

Based on our segregation data, the presence of this variant in other families with HCM tested by the clinical laboratory, and its absence in controls, the laboratory eventually reclassified this variant as pathogenic. This highlights the importance of 2-way communication between clinicians and genetic testing laboratories, which can significantly move the science forward.

Segregation analysis can also be a key factor in proving that an identified variant is not the cause of familial disease, as in the following example. A 20-year-old woman was recently diagnosed with HCM and had a known maternal family history of disease. The patient’s mother and maternal grandmother had each been diagnosed. When genetic testing identified a VUS in the patient, we began testing other affected family members to determine whether they, too, carried the variant. The very first test result, for the patient’s affected mother, was negative. We could, therefore, conclude that the VUS detected on the multigene HCM panel was not the cause of the family’s disease. The genetic pathogenesis in this family remains undefined.

The Pedigree in Clinical Practice

Constructing a 3-generation family pedigree from scratch is undeniably time-consuming and may seem prohibitively so to a busy physician. A genetic counselor typically devotes at least 20 minutes to taking a patient’s family medical history, with additional time spent outside the actual clinical visit on tasks such as seeking and reviewing family medical records.
Nonetheless, there are time-efficient ways to engage patients and their family members in constructing a detailed and accurate history. For example, the Surgeon General’s Family Health History Initiative has created a Web-based pedigree tool. At https://familyhistory.hhs.gov, patients can enter information about their family members and generate a printable pedigree to bring to clinic. Sending patients a family medical history questionnaire in advance of an appointment, and urging them to discuss it with knowledgeable family members before creating an online pedigree, may maximize the chances of obtaining useful information.68

Encouraging patients to begin a direct dialog about medical history with their extended family members sets in motion a highly informative process. We see family histories change dramatically, with new diagnoses and SCDs uncovered, once heart disease becomes the subject of conversation and detective work within the family. The physician can guide this family process by alerting patients to the relevant signs and symptoms of inherited disease and by pointing out individuals within the family pedigree whose medical histories are of greatest interest. Distributing family letters is an effective way to inform relatives and to encourage cardiology screening and genetic testing.59 These letters will often prompt family members to reveal diagnoses not previously known to the patient.

Accuracy of Family History
As clinicians know from experience, patients may possess only vague details about a family member’s medical condition or specific cause of death. Studies show that even an event as dramatic as myocardial infarction in a parent or sibling is known to and reported by the patient just 80% to 85% of the time, with accuracy further decreasing for more distant family members.60–63 Complicating matters, patients tend to report any life-threatening cardiac event as a heart attack, unfamiliar with the distinction between this and cardiac arrest.64

The initial history obtained by patient report should, therefore, be considered a starting point for further investigation, confirmed whenever possible through medical records, death certificates, and autopsy reports. If a diagnosis of HCM is not clearly stated, then it can often be inferred from the weight of the heart or from pathognomonic histological features of HCM, such as cardiac myocyte hypertrophy, disarray, or increased myocardial fibrosis.6

Illustrative Case
Figure 8 illustrates how the detailed family history for the case introduced in Figure 7 was actually obtained. Like the majority of individuals newly diagnosed with HCM, the patient did not think he had a family history of the disease at the time of his first appointment. Figure 8A shows the information obtained by patient report at his first genetic counseling session. However, in counseling, we identified family members whose medical records might potentially reveal HCM. One brother (II-3) had experienced arrhythmias and had undergone heart surgery. A sister (III-4) had a big heart and required a pacemaker. His other 2 siblings had no heart issues, but a niece (IV-3) had been born with a congenital heart problem. On the patient’s mother’s side of the family, 2 uncles (II-7 and II-8) had died suddenly—although the patient did not know the cause.

Compare this with the family history as it looked after the patient obtained family medical records at our request (Figure 8B). Cardiology records for the patient’s brother and sister showed them both to have HCM. The same was true of his niece, revealing his unaffected sister (III-1) as an obligate carrier.

As conversations about heart disease continued within the family, the patient’s mother contacted us with new information (Figure 8C). Her sister (II-9), she had discovered, also carried a diagnosis of HCM. What’s more, the family had suffered not 2 but 3 SCDs, the third having occurred in the patient’s cousin (III-7). Not only did this new information definitively localize the disease to the maternal side of the family, it revealed the patient’s mother (II-4) as another obligate carrier and provided evidence that the family was at increased risk for SCD, influencing decisions about the need for primary prevention through implantable cardioverter-defibrillator implantation. The negative family history was not negative at all: 4 of the patient’s living family members had HCM.

Summary
To engage patients in constructing their own comprehensive family medical history, suggest they do the following:

1. Speak with knowledgeable family members about their relatives’ health.
2. Contact family members with heart issues to clarify the exact diagnosis.
3. Fill out a family history questionnaire.
5. Gather cardiology records for family members who could potentially have HCM.
6. Gather autopsy reports and death certificates for suspicious sudden or accidental deaths.
7. Update you on new diagnoses or sudden deaths.

The Future
We have focused in this review on ways to predict and respond to HCM using family history. Even with today’s technology, however, some approaches to disease prevention are possible. Preimplantation genetic diagnosis offers the opportunity to decrease the chance of passing a disease-causing variant to the next generation. Preimplantation genetic diagnosis involves using embryo selection during in vitro fertilization directed by genetic testing of a single cell from each embryo considered.64 Couples attempt pregnancy using only embryos determined not to carry the disease-causing variant. At around $20,000 per cycle, however, the financial expense of in vitro fertilization/preimplantation genetic diagnosis is considerable—and it is often not covered by insurance. It also requires identifying the family’s HCM-causing variant in advance, which for almost half of HCM patients is not currently possible.33, 36, 46–50

Looking to the future, an active area of research interest involves developing new therapies that can slow or even halt development of the disease.65 As more families undergo genetic testing for HCM, a new preclinical population is growing.
Figure 8. Constructing a family history is a dynamic process that unfolds over time. A, At diagnosis, this patient (arrow) had no known history of hypertrophic cardiomyopathy (HCM) but reported suspicious cardiac features in 3 family members (III-2, III-4, and IV-3). B, Review of family medical records dramatically altered the original history, showing those 3 family members to have HCM and the patient’s unaffected sister (III-1) to be an obligate carrier (vertical line). C, The patient’s mother then reported that her sister (II-9) carried a diagnosis of HCM. This definitively localized the disease to the maternal side of the family, revealing the patient’s mother (II-4) as another obligate carrier. Circles indicate females; squares, males; and slash, deceased.
These apparently healthy individuals carry the family’s HCM-causing variant, yet currently exhibit no evidence of hypertrophy. At the moment, clinicians can only screen and wait for clinical features of HCM to appear, then assess risk for SCD and try to palliate symptoms. To truly transform the lives of families with HCM, we will instead need to learn how to prevent preclinical cases from progressing to overt disease.

One such approach has shown promise in a mouse model of HCM and has advanced to testing in humans. Mouse studies have shown abnormalities in intracellular calcium handling by cardiac myocytes to be among the earliest detectable manifestations of the disease.66–69 Treating preclinical mice with the L-type calcium channel blocker diltiazem reduced the amount of hypertrophy, disarray, and fibrosis to develop in their hearts, as compared with placebo.67 Similarly, blocking transforming growth factor-β signaling with the angiotensin II receptor antagonist losartan has been shown to prevent the emergence of hypertrophy and fibrosis.70 These findings have led to the first human placebo-controlled pilot study of a preventive approach to HCM (http://clinicaltrials.gov/ct2/show/record/NCT00319982), as well as a multicenter initiative to foster better understanding of this preclinical stage and to test new approaches for disease modification.

Conclusion

In summary, we have highlighted the power of family history in the workup of patients with cardiac hypertrophy. From clarifying diagnosis in those with unclear pathogenesis to forming the bedrock of genetic evaluation in those with clearly demonstrated disease, the family history is more powerful now than ever before. Indeed, even as new genetic technologies usher in an unprecedented appreciation of our patients’ genomes, we will continue to rely on the family history to inform thoughtful care and rational management of patients and families with hypertrophic disease.

Acknowledgment

We thank our patients and their families.

Sources of Funding

Dr Ashley is supported by National Institutes of Health (NIH) Director’s New Innovator award DP2 OD004613, NIH ROI award HL105993, and Stanford NIH/National Center for Research Resources Clinical and Translational Science award UL1 RR029890. Dr Ho is supported by NIH/National Heart, Lung, and Blood Institute awards 1P50HL112349-01 and 1P20HL101408-01 and NIH/National Human Genome Research Institute award U10 HG006500-01.

Disclosures

Dr Ashley is a stockholder and consultant for Personalis, Inc. The other authors report no conflicts.

References

Key Words: cardiomyopathy ■ diagnosis ■ genetics ■ hypertrophy ■ sudden death
A Clinical Approach to Inherited Hypertrophy: The Use of Family History in Diagnosis, Risk Assessment, and Management
Kyla E. Dunn, Colleen Caieshu, Allison L. Cirino, Carolyn Y. Ho and Euan A. Ashley

doi: 10.1161/CIRCGENETICS.110.959387

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circgenetics.ahajournals.org/content/6/1/118

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Genetics can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Genetics is online at:
http://circgenetics.ahajournals.org/subscriptions/