Association of Genome-Wide Variation With Highly Sensitive Cardiac Troponin-T Levels in European Americans and Blacks

A Meta-Analysis From Atherosclerosis Risk in Communities and Cardiovascular Health Studies

Bing Yu, MD, MSc; Maja Barbalic, PhD; Ariel Brautbar, MD; Vijay Nambi, MD; Ron C. Hoogeveen, PhD; Weihong Tang, PhD; Thomas H. Mosley, PhD; Jerome I. Rotter, MD; Christopher R. deFilippi, MD; Christopher J. O’Donnell, MD; Sekar Kathiresan, MD; Ken Rice, PhD; Susan R. Heckbert, MD, PhD; Christie M. Ballantyne, MD; Bruce M. Psaty, MD, PhD; Eric Boerwinkle, PhD; on behalf of the CARDIoGRAM Consortium

Background—High levels of cardiac troponin T, measured by a highly sensitive assay (hs-cTnT), are strongly associated with incident coronary heart disease and heart failure. To date, no large-scale genome-wide association study of hs-cTnT has been reported. We sought to identify novel genetic variants that are associated with hs-cTnT levels.

Methods and Results—We performed a genome-wide association in 9491 European Americans and 2053 blacks free of coronary heart disease and heart failure from 2 prospective cohorts: the Atherosclerosis Risk in Communities Study and the Cardiovascular Health Study. Genome-wide association studies were conducted in each study and race stratum. Fixed-effect meta-analyses combined the results of linear regression from 2 cohorts within each race stratum and then across race strata to produce overall estimates and probability values. The meta-analysis identified a significant association at chromosome 8q13 (rs10091374; \(P=9.06 \times 10^{-9}\)) near the nuclear receptor coactivator 2 (NCOA2) gene. Overexpression of NCOA2 can be detected in myoblasts. An additional analysis using logistic regression and the clinically motivated 99th percentile cut point detected a significant association at 1q32 (rs12564445; \(P=4.73 \times 10^{-4}\)) in the gene TNNT2, which encodes the cardiac troponin T protein itself. The hs-cTnT-associated single-nucleotide polymorphisms were not associated with coronary heart disease in a large case-control study, but rs12564445 was significantly associated with incident heart failure in Atherosclerosis Risk in Communities Study European Americans (hazard ratio=1.16; \(P=0.004\)).

Conclusions—We identified 2 loci, near NCOA2 and in the TNNT2 gene, at which variation was significantly associated with hs-cTnT levels. Further use of the new assay should enable replication of these results. (Circ Cardiovasc Genet. 2013;6:82-88.)

Key Words: genetics | genome-wide association study | troponin

Cardiac troponin T (cTnT) is a thin filament protein that participates in cardiac muscle contraction. Detection of cTnT in peripheral blood indicates cardiomyocyte injury, and cTnT is 1 of the preferred biochemical markers for diagnosis and prognosis of acute coronary syndromes.1,2 This low molecular weight protein is released into the circulation not only after damage to myocytes but also after inflammation and trauma.3,4 The detection limit of the conventional assay for cTnT is \(0.01 \mu g\) per liter, but studies have shown that cTnT levels below this limit differentiates individuals at high or low risk for future cardiovascular events or death.5,6 A recently developed highly sensitive assay for cardiac troponin T (hs-cTnT) can detect hs-cTnT levels 10 times lower than conventional assays.7 A population-based study of older...
adults reported that increased levels when compared with undetectable levels of hs-cTnT are associated with incident heart failure (HF) and cardiovascular mortality. Moreover, in a population-based sample without coronary heart disease (CHD), hs-cTnT is a significant predictor of incident CHD, as well as overall mortality and HF.\(^3\)

Clinical Perspective on p 88

cTnT is encoded by the TNNT2 gene, and mutations in this gene account for \(\approx 15\%\) of familial hypertrophic cardiomyopathy, which is associated with high risk of sudden cardiac death.\(^4,5\) It is plausible that serum cTnT levels may be influenced by genetic variation in the TNNT2 and other genes. But to date no genome-wide association study (GWAS) of cTnT levels has been published. In this study, we sought to identify novel genetic variants that contribute to cTnT levels, which were measured by the new highly sensitive assay.

Methods

Study Populations

The Atherosclerosis Risk in Communities Study (ARIC) is a prospective cohort study designed to ascertain the cause and predictors of cardiovascular disease, which enrolled 15 792 middle-aged adults from 4 US communities from 1987 to 1989. The Cardiovascular Health Study (CHS) is a prospective observational cohort study designed to investigate cardiovascular disease in older adults, which enrolled 5201 individuals in the original cohort from 1989 through 1990, with further enrollment of a minority sample of 687 blacks from 1992 through 1993. Their detailed designs have been published elsewhere.\(^6,7\) Participants were excluded on the basis of the following factors: (1) if they had prevalent CHD or HF when hs-cTnT levels were measured; (2) if they were first-degree relatives of someone else in the study; (3) if there were sample handling errors or race or sex discrepancies between reported data and genotype data; and (4) if they did not give consent for use of DNA information.

hs-cTnT Measurement

In ARIC, hs-cTnT levels were measured using visit 4 plasma samples from 1996 to 1998. In the CHS, hs-cTnT levels were measured at baseline from 1989 through 1990 and 1992 through 1993 for European Americans (EAs) and blacks recruited in the original cohort, and from 1992 through 1993 and 1994 through 1995 for blacks recruited in the minority cohort. Plasma samples were stored at \(\approx 70\)°C to \(\approx 80\)°C and thawed before testing. Hs-cTnT levels were measured with the Elecsys Troponin T sensitive assay (Roche Diagnostics, Indianapolis, IN). The range of detection of this assay is from 0.003 to 10 µg/L. For CHS participants with >1 hs-cTnT measurement, we selected the first measurement.

Genotyping and Imputation

Autosomal single-nucleotide polymorphisms (SNPs) were genotyped using the Affymetrix 6.0 chip for ARIC and the Illumina 370CNV chip for CHS. Each study imputed their genotype data to the \(\approx 2.5\) million SNPs identified in HapMap CEU (Utah residents with ancestry from northern and western Europe) samples for EAs. For blacks, SNP data were imputed based on a panel of reference haplotypes using HapMap CEU and YRI (Yoruba in Ibadan, Nigeria) samples. MACH v1.0 in ARIC and BIMBAM v0.99 in CHS were used for the imputation, and allele dosage information was summarized in the imputation results. SNPs were excluded if they had no chromosomal location, were monomorphic, had a call rate <95%, or had a Hardy–Weinberg equilibrium \(P\) value <10\(^{-4}\) for ARIC or \(P\) value <10\(^{-3}\) for CHS. For each eligible SNP in both cohorts, the ratio of the observed versus expected variance of the dosage served as a measure of imputation quality. A ratio <0.3 was considered to be poor imputation quality, and these SNPs were removed from further analyses.

Statistical Analyses

Hs-cTnT levels were treated as a continuous and a dichotomous variable in 2 distinct regression analyses. In addition to genotype, covariates used in the regression were obtained at the time when hs-cTnT levels were measured. When analyzing continuous hs-cTnT levels, standard linear regressions were used. In EAs, the adjustment covariates were age, sex, and study site. In blacks, additional covariates included the first 10 principal components to account for population stratification.\(^8,9\) Individuals whose cTnT levels were below the lowest detectable limit were assigned a value of 0.003 µg/L (the known detection limit of the assay). All cTnT values were natural log-transformed before analysis. For analyzing dichotomized hs-cTnT levels, we used the recently recommended value of >99th percentile of hs-cTnT concentration to diagnose non-ST-elevation myocardial infarction.\(^10,11\) Therefore, we grouped hs-cTnT levels into 2 categories: <99th percentile versus ≥99th percentile and used logistic regression with this binary outcome. Because of the small number of blacks in the 2 cohorts with hs-cTnT levels ≥99th percentile, the logistic regression was applied only in EAs. The study-specific 99th percentile of hs-cTnT for ARIC and CHS is 0.027 µg/L and 0.036 µg/L, respectively.

In all analyses, the effects of SNPs were estimated under an additive genetic model; a locus with 2 copies of the coded alleles was coded as 2, the heterozygote was coded as 1, and 2 copies of the noncoded alleles were coded as 0. For each model and after genonic control adjustment, inverse variance fixed-effect meta-analyses were used to combine the results of the 2 cohorts within race strata and then again to meta-analyze the race-specific results to obtain an overall \(\beta\) coefficient, \(SE\), and \(P\) value. Because of the relative small sample size of blacks, analyses with low minor allele frequency (MAF) would be underpowered or lead to spurious associations. Thus, SNPs with a MAF <1% for EAs and <10% for blacks, or absolute value of \(\beta\) coefficient >5, were excluded before the meta-analyses. Only SNPs present in both cohorts and race strata were included in the meta-analysis results. Quantile–quantile plots of the observed and expected \(P\) values for all eligible SNPs were generated for each analysis to illustrate the behavior of the test statistics. Genome-wide significance was defined as an overall \(P\) value <5×10\(^{-8}\) in this study, and a \(P\) value <1×10\(^{-8}\) was regarded as suggestive evidence for association. If >1 suggestive or significant SNP clustered at a genetic locus, the SNP with the smallest \(P\) value was reported as the locus’s sentinel marker. Forest plots showing cohort/race-specific findings and regional plots showing linkage disequilibrium and gene information were generated for genome-wide significant SNPs in each analytic model. All analyses in CHS were performed by R (www.r-project.org) and by ProbABEL\(^16\) in ARIC. The association between the genome-wide significant SNPs in each analytic model. All analyses in CHS were performed by R (www.r-project.org) and by ProbABEL\(^16\) in ARIC. The estimated post hoc power based on the parameter estimates presented here are: (1) for the linear model: 85% power with 12 000 individuals, MAF=0.48, \(\alpha=5\times10^{-5}\), and 0.35% variation explained by the SNP; and (2) binary model: 70% power with 10 000 individuals, MAF=0.2, \(\alpha=5\times10^{-5}\), and odds ratio=2.5.

Because hs-cTnT levels are known to have a skewed distribution, we analyzed the association of the top-ranking SNP in the linear model with categorical hs-cTnT levels using proportional odds logistic regression.\(^8,9\) We grouped the undetectable cTnT levels as the reference group, and the remaining participants were divided into approximate quartiles (0.003–0.0055 µg/L, 0.0056–0.0085 µg/L, 0.0086–0.0135 µg/L, and >0.0135 µg/L). The proportional odds assumption was tested using the Brant test and the same strategy was applied for the meta-analysis as described above. These analyses were performed using Stata (StataCorp, www.stata.com) and R (www.r-project.org).

Association with HF and CHD

The association between the genome-wide significant SNPs in each model and incident HF were tested in ARIC using a Cox proportional hazards model adjusted for age, sex, and study site. The analyses were performed by R (www.r-project.org). In ARIC, the diagnosis of HF was based on International Classification of Diseases, Ninth Revision code 428.3, whereas incident HF was defined as the first hospitalization or death from HF for those without a prior HF hospitalization.
 Individuals were followed up for events through December 31, 2008; those who were lost to follow-up were censored at the date of last contact. The association between the genome-wide significant SNPs and CHD were examined from results in 22,233 cases and 64,762 controls from the Coronary Artery Disease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study. 2,18 Although details differed among the contributing studies in CARDIoGRAM, the definition of CHD included clinically defined myocardial infarction or angiographically accessed coronary artery disease. Information about the CARDIoGRAM study is provided in online-only Data Supplement A.

Results

A total of 9,491 EAs and 2,053 blacks were included in these genome-wide association analyses. The characteristics of 11,544 study participants free of CHD and HF at the time of the study was measured are shown in the Table. The average age at baseline varied from 61.68 to 72.82 years, and women were the majority in each cohort. By design, CHS study participants were older than those in ARIC. The mean hs-cTnT levels and the proportion of hs-cTnT levels below the detectable limit were similar across race strata and cohorts. Both EAs and blacks had average body mass indices >25, and blacks tended to have higher prevalence of hypertension and diabetes mellitus.

Linear Model and Proportional Odds Logistic Model

For the analyses of hs-cTnT as a continuous variable, the race-and-cohort-specific genomic control parameters were 1.03 for ARIC EAs, 1.03 for ARIC blacks, 1.02 for CHS EAs, and 1.05 for CHS blacks. After doing the 2-stage meta-analyses, 2 SNPs exceeded the genome-wide significance threshold ($P<5\times10^{-8}$). The overall genomic control parameter of 1.0 for this model suggested negligible population stratification. The Manhattan plot and quantile–quantile plot of the 2-stage meta-analyzed P values are shown in Figure 1. Twelve genetic loci were identified with genome-wide suggestive evidence for association ($P<1\times10^{-5}$). These suggestive loci, presented in online-only Data Supplement B, are not discussed further.

The 2 genome-wide significant SNPs were rs10091374 ($P=9.06\times10^{-9}$) and rs6989313 ($P=2.33\times10^{-8}$) located at chromosome 8q13. These 2 SNPs were in strong linkage disequilibrium, $r^2=0.8$. The top SNP, rs10091374, was an imputed SNP with MAF=0.483 and estimated effect size $\beta=-0.04$ (T→A), corresponding to a 4% reduction in hs-cTnT levels per additional A allele. This SNP lies between 2 genes; it is 70.9 kb from NCOA2 (nuclear receptor coactivator 2) and 98.5 kb from TRAM1 (translocation associated membrane protein 1). A forest plot of the 2-stage meta-analysis result for rs10091374 is shown in Figure 2, and information about linkage disequilibrium and other SNPs in this region are presented in online-only Data Supplement B.

We further conducted proportional odds logistic regression for rs10091374, and per additional A allele for rs10091374, the odds of being in the 4 higher hs-cTnT categories versus the undetectable hs-cTnT category were reduced by 11% (odds ratio=0.89; $P=4.5\times10^{-8}$).

Table. Characteristics of Participants by Cohort and Race

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>ARIC</th>
<th>CHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EA</td>
<td>B</td>
</tr>
<tr>
<td>Participants, n</td>
<td>6460</td>
<td>1539</td>
</tr>
<tr>
<td>Age, y</td>
<td>62.86±5.61</td>
<td>61.68±5.70</td>
</tr>
<tr>
<td>Age range, y (53.00–75.00)</td>
<td>(53.00–75.00)</td>
<td>(53.00–75.00)</td>
</tr>
<tr>
<td>Women, %</td>
<td>56.11</td>
<td>64.85</td>
</tr>
<tr>
<td>hs-cTnT, μg/L*</td>
<td>0.004 (0.003–0.007)</td>
<td>0.005 (0.003–0.008)</td>
</tr>
<tr>
<td>Participants with hs-cTnT below the detectable limit, %</td>
<td>34.0</td>
<td>32.6</td>
</tr>
<tr>
<td>Body mass index, kg/m2</td>
<td>28.11±5.19</td>
<td>30.47±6.18</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>125.56±18.34</td>
<td>133.16±19.74</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>70.04±9.76</td>
<td>75.84±10.46</td>
</tr>
<tr>
<td>Total cholesterol, mg/dL</td>
<td>202.39±35.6</td>
<td>199.48±37.37</td>
</tr>
<tr>
<td>Triglyceride, mg/dL</td>
<td>148.9±83.95</td>
<td>113.59±64.74</td>
</tr>
<tr>
<td>Low-density lipoprotein, mg/dL</td>
<td>123.25±32.35</td>
<td>123.65±35.37</td>
</tr>
<tr>
<td>High-density lipoprotein, mg/dL</td>
<td>49.88±16.31</td>
<td>53.25±16.53</td>
</tr>
<tr>
<td>Current smoker, %</td>
<td>14.23</td>
<td>17.8</td>
</tr>
<tr>
<td>Prevalent hypertension, %</td>
<td>39.36</td>
<td>64.32</td>
</tr>
<tr>
<td>Prevalent diabetes mellitus, %</td>
<td>11.72</td>
<td>24.98</td>
</tr>
</tbody>
</table>

In the Atherosclerosis Risk in Communities Study (ARIC), prevalent hypertension included use of antihypertensive medication or measured blood pressure (systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg); prevalent diabetes mellitus was defined as fasting glucose levels ≥126 mg/dL, nonfasting glucose levels ≥200 mg/dL, or self-reported diagnosis of diabetes mellitus or use of diabetic medication. In the Cardiovascular Health Study (CHS), prevalent hypertension included measured blood pressure (systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg) or use of antihypertensive drug and reports of physician diagnosis of hypertension; prevalent diabetes mellitus was defined as fasting glucose levels ≥126 mg/dL, or use of insulin or an oral hypoglycemic drug. B indicates blacks; EA, European Americans; and hs-cTnT, highly sensitive cardiac troponin T.

*hs-cTnT levels, median (quartile 1, quartile 3). For continuous variables, mean values±SEs are shown. Categorical variables are given as percentage.
Logistic Model
In the dichotomized analyses of hs-cTnT for EAs, the genomic control parameters were 1.01 for ARIC, 1.06 for CHS, and 1.0 after the meta-analysis. One SNP, rs12564445, reached the genome-wide significance threshold (odds ratio=2.33; G→A; \(P = 4.73 \times 10^{-8} \); MAF=0.197). This SNP was imputed in ARIC and CHS EAs. rs12564445 is located in an intron of the gene that codes for cTnT type 2 (TNNT2) and is responsible for 133% greater odds of being in the 99th percentile group for each additional A allele. Information about linkage disequilibrium and other SNPs in this region is presented in Figure 3. In addition to this region, 8 more regions were identified with suggestive evidence for genome-wide association (\(P < 1 \times 10^{-5} \)). Details about these suggestive regions are provided in online-only Data Supplement Supplement B. The effect of rs12564445 on the continuous measure of hs-cTnT was not statistically significant (\(\beta = -0.0017; \ P = 0.86 \)), corresponding to a 0.2% reduction in hs-cTnT level per additional A allele. The effect of rs10091374, which was significant in the linear model meta-analysis of the continuous measure of hs-cTnT, was not statistically significant for the categorical measure (odds ratio=0.79; \(P = 0.10 \)).

Association With HF and CHD
We next analyzed the association of rs10091374 and rs12564445 with 1119 incident HF events in ARIC EAs and with 22233 CHD cases from the CARDIoGRAM consortium.17,18 In all cases except 1, the results were not statistically significant (data not shown; \(P > 0.05 \)). rs12564445 was significantly associated with incident HF among 8894 ARIC EAs.
with an average 18 years follow-up time (hazard ratio = 1.16; 95% confidence interval, 1.05–1.28; P = 0.004). We repeated the analyses with a competing risk model developed by Fine and Grey,\(^9\) and the results were very similar to the Cox regression reported here, subhazard ratio was 1.17 (95% confidence interval, 1.06–1.30; P = 0.002).

Discussion

This study evaluated the association between genetic variants and hs-cTnT levels among participants free of CHD and HF. The meta-analysis, which included 9491 EAs and 2053 blacks, identified 1 locus on chromosome 8q13 that was significantly associated with hs-cTnT levels and 12 additional suggestive loci. Furthermore, 1 locus, **TNNT2**, was associated with high hs-cTnT levels (>99th percentile) in 9491 EAs together with 8 additional loci showing suggestive association.

The effects of both SNPs on quantitative and categorical hs-cTnT levels are generally consistent. For rs10091374, the direction of effect is the same in all 4 analyses (2 race groups × 2 phenotype definitions). There is ≥21% lower odds of being in the 99th percentile of hs-cTnT per additional A allele, which is consistent with the A allele lowering hs-cTnT levels. For rs12564445, the effect is consistent in blacks but not in EAs. It is possible that the significant association of rs12564445 with elevated hs-cTnT levels represents the biological effect of a low frequency variant private to EAs.

The gene most likely responsible for the association between hs-cTnT levels and chromosome 8q13 is **NCOA2**, which encodes a transcriptional coregulatory protein that aids in the function of nuclear hormone receptors. Our observation that an additional A allele at this locus decreases hs-cTnT levels was confirmed by proportional odds logistic regression. Overexpression of **NCOA2** has been detected in both proliferating and confluent myoblasts, and Western blot analysis shows it increases during myogenesis,\(^26\) and reduced expression has been observed in pulmonary arterial hypertension.\(^21\) Thus, **NCOA2** may play a role in promoting muscle cells maintenance and growth, eventually influencing cTnT levels.

In addition, we hypothesize that specific genes may contribute to high hs-cTnT levels (≥99th percentile in the population). Under such a model, rs12564445 in the **TNNT2** gene reached the genome-wide significance threshold in our analysis. **TNNT2** encodes cTnT, and it is well known that mutations in this gene can cause familial hypertrophic cardiomyopathy,\(^22–24\) familial dilated cardiomyopathy,\(^25–27\) and left ventricular noncompaction.\(^28\) The specificity of hs-cTnT assay for categorizing non-ST-elevation myocardial infarction is ≥80%.\(^2\) Given the function of **TNNT2**, it would be interesting to explore whether variation in **TNNT2** contributes to the remaining ≥20% false-positives.

Several recent epidemiological studies have reported that hs-cTnT levels predict incident HF and CHD in multiple populations.\(^8,9,29\) In this GWAS, 2 loci reached genome-wide significance, but only rs12564445 was significantly associated with incident HF in EAs, and neither of them was significantly associated with CHD. In previous studies, mutations in **TNNT2** have been associated with hypertrophic cardiomyopathy,\(^21–23\) and in ARIC this variant is associated with ECG-determined

Table 1. Regional association plot of highly sensitive cardiac troponin T (hs-cTnT) for the genome-wide significant marker rs12564445 in European Americans (linear analysis). CEU indicates Utah residents with ancestry from northern and western Europe.
left ventricular hypertrophy (data not shown). In this study, *TNNT2* gene variation is related to both hs-cTnT levels and incident HF, and it has been repeatedly reported that hs-cTnT levels are associated with incident HF. It is likely that *TNNT2* alters the levels of hs-cTnT, which subsequently influences the onset of HF. But such relations were not found for incident CHD. Given these results, we suggest that hs-cTnT may not be in the causal pathway for CHD but may in some cases be in the causal pathway for HF.

Strengths and Limitations

This study is the first GWAS to reveal genetic risk variants for hs-cTnT levels. The effect size and MAF of the genetic variant detected in the linear model were consistent across EAs and blacks, which provides some evidence that the genetic mechanism for hs-cTnT may be similar between the 2 groups. Our study also has several limitations. A study in CHS indicated that the changes of hs-cTnT levels over time were associated with HF, but hs-cTnT levels were only measured at 1 visit in ARIC. Thus, we were unable to comment on the genetic contribution to the variability of hs-cTnT levels. Different thresholds for hs-cTnT based on 99th study-specific percentiles were used in the current study. We hypothesized that genetic variation contributes to high hs-cTnT levels, but discovered that the 99th percentile of 0.014 μg/L provided by the manufacturer is based on healthy people who are ≈10 and 20 years younger than ARIC and CHS, respectively. Because of the increased age of CHS and ARIC participants, the distribution of hs-cTnT was shifted up in both studies. Thus, we analyzed a study-specific 99th percentile threshold, which could complicate future replication studies. For blacks, we could not examine genetic association with extremely high hs-cTnT levels due to limitations of the available sample size. Although the sensitivity of this new cTnT assay is improved, there still is a lowest detectable limit, and those with missing data at baseline were imputed with this low value limit as a proxy for an undetectably low true value. If this low value were due to genetic variation, the limitations of the assay may impact the statistical power of these analyses. Finally, the effect of the significant SNP observed under the linear model was interpreted in the context of the nearest gene, and the effect of the significant SNP observed under the association analysis may impact the statistical power of these analyses.

Disclosures

None.

References

8. deFilippi CR, de Lemos JA, Christenson RH, Gottlieben JS, Kop WJ, Zhan M, et al. Association of serial measures of cardiac troponin T based on 99th study-specific percentiles were used in the current study. We hypothesized that genetic variation detected in the linear model was interpreted in the context of the nearest gene, and the effect of the significant SNP observed under the association analysis may impact the statistical power of these analyses.

Acknowledgments

We acknowledge the essential role of The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium in developing and supporting this article. CHARGE members include the ARIC, the CHS, Framingham Heart Study (FHS) and Rotterdam Study (RS), and Age, Gene/Environment Susceptibility. The authors also thank the staff and participants of the ARIC and CHS study for their important contributions. Dr Yu is supported in part by the Burroughs Wellcome Fund.

Sources of Funding

The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN26820110008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL078641, R01HL59367, and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health, and NIH Roadmap for Medical Research. This Cardiovascular Health Study research was supported by the National Heart, Lung, and Blood Institute contracts N01-HC-85239, N01-HC-85079 through N01-HC-85086; N01-HC-35129, N01-HC-15103, N01-HC-55222, N01-HC-75150, and N01-HC-45133; and National Heart, Lung, and Blood Institute grants HL080295, HL075366, HL085251, HL087652, and HL105756, with additional contributions from National Institute of Neurological Disorders and Stroke. Additional support was provided through AG-023629, AG-15928, AG-20098, and AG-027035 from the National Institute on Aging. See also http://www.chs-nhlbi.org/pi.htm. DNA handling and genotyping was supported in part by National Center for Research Resources CTSI grant UL1RR033176 and National Institute of Diabetes and Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocrinology Research Center and the Cedars-Sinai Board of Governors’ Chair in Medical Genetics (to Dr Rotter).
Clinical Perspective

Cardiac troponin T (cTnT) is a biomarker of cardiomyocyte injury. A highly sensitive cTnT assay can detect levels of cTnT 10-fold lower than the conventional assay. After a genome-wide association study, 1 locus near NCOA2 on chromosome 8q13 was identified to be associated with quantitative highly sensitive cTnT levels across European Americans and blacks. The other locus in the TNNT2 gene, which codes for cTnT, was associated with highly sensitive cTnT levels in European Americans. These 2 loci were not associated with incident coronary heart disease, but the TNNT2 variant was associated with increased risk of incident heart failure after 18 years of follow-up. These results contribute to the knowledge base of the role of cTnT as a biomarker of cardiac injury.
Association of Genome-Wide Variation With Highly Sensitive Cardiac Troponin-T Levels in European Americans and Blacks: A Meta-Analysis From Atherosclerosis Risk in Communities and Cardiovascular Health Studies

on behalf of the CARDIoGRAM Consortium

Circ Cardiovasc Genet. 2013;6:82-88; originally published online December 16, 2012; doi: 10.1161/CIRCGENETICS.112.963058

Circulation: Cardiovascular Genetics is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231

Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 1942-325X. Online ISSN: 1942-3268

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circgenetics.ahajournals.org/content/6/1/82

Data Supplement (unedited) at:

http://circgenetics.ahajournals.org/content/suppl/2012/12/16/CIRCGENETICS.112.963058.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Cardiovascular Genetics_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:

http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Cardiovascular Genetics_ is online at:

http://circgenetics.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL
Supplement A

Sources of Funding for the CardioGram Study

The ADVANCE study was supported by a grant from the Reynold's Foundation and NHLBI grant HL087647. Genetic analyses of CADomics were supported by a research grant from Boehringer Ingelheim. Recruitment and analysis of the CADomics cohort was supported by grants from Boehringer Ingelheim and PHILIPS medical Systems, by the Government of Rheinland-Pfalz in the context of the “Stiftung Rheinland-Pfalz für Innovation”, the research program “Wissen schafft Zukunft” and by the Johannes-Gutenberg University of Mainz in the context of the “Schwerpunkt Vaskuläre Prävention” and the “MAIFOR grant 2001”, by grants from the Fondation de France, the French Ministry of Research, and the Institut National de la Santé et de la Recherche Médicale.

The deCODE CAD/MI Study was sponsored by NIH grant, National Heart, Lung and Blood Institute R01HL089650-02. The German MI Family Studies (GerMIFS I-III (KORA)) were supported by the Deutsche Forschungsgemeinschaft and the German Federal Ministry of Education and Research (BMBF) in the context of the German National Genome Research Network (NGFN-2 and NGFN-plus), the EU funded integrated project Cardiogenics (LSHM-CT-2006-037593), and the bi-national BMBF/ANR funded project CARDomics (01KU0908A).

LURIC has received funding from the EU framework 6 funded Integrated Project “Bloodomics” (LSHM-CT-2004-503485), the EU framework 7 funded Integrated Project AtheroRemo (HEALTH-F2-2008-201668) and from Sanofi/Aventis, Roche, Dade Behring/Siemens, and AstraZeneca.

The MiGen study was funded by the US National Institutes of Health (NIH) and National Heart, Lung, and Blood Institute’s STAMPEED genomics research program through R01 HL087676. Ron Do from the MiGen study is supported by a Canada Graduate Doctoral Scholarship from the Canadian Institutes of Health Research.

Recruitment of PennCATH was supported by the Cardiovascular Institute of the University of Pennsylvania. Recruitment of the MedStar sample was supported in part by the MedStar Research Institute and the Washington Hospital Center and a research grant from GlaxoSmithKline. Genotyping of PennCATH and Medstar was performed at the Center for Applied Genomics at the Children’s Hospital of Philadelphia and supported by GlaxoSmithKline through an Alternate Drug Discovery Initiative research alliance award (M. P. R. and D. J. R.) with the University of Pennsylvania School of Medicine.
The **Ottawa Heart Genomic Study** was supported by CIHR #MOP--82810 (R. R.), CFI #11966 (R. R.), HSFO #NA6001 (R. McP.), CIHR #MOP172605 (R. McP.), CIHR #MOP77682 (A. F. R. S.).

The **WTCCC Study** was funded by the Wellcome Trust. Recruitment of cases for the WTCCC Study was carried out by the British Heart Foundation (BHF) Family Heart Study Research Group and supported by the BHF and the UK Medical Research Council. N. J. S. and S. G. B. hold chairs funded by the British Heart Foundation. N. J. S. and A.H.G are also supported by the Leicester NIHR Biomedical Research Unit in Cardiovascular Disease and the work described in this paper is part of the research portfolio of the Leicester NIHR Biomedical Research Unit.

The **Age, Gene/Environment Susceptibility Reykjavik Study** has been funded by NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament).

The **Cleveland Clinic GeneBank** study was supported by NIH grants P01 HL098055, P01HL076491-06, R01DK080732, P01HL087018, and 1RO1HL103931-01. The collection of clinical and sociodemographic data in the **Dortmund Health Study** was supported by the German Migraine- & Headache Society (DMKG) and by unrestricted grants of equal share from Astra Zeneca, Berlin Chemie, Boots Healthcare, Glaxo-Smith-Kline, McNeil Pharma (former Woelm Pharma), MSD Sharp & Dohme and Pfizer to the University of Muenster. Blood collection was done through funds from the Institute of Epidemiology and Social Medicine, University of Muenster.

The **EPIC-Norfolk study** is supported by the Medical Research Council UK and Cancer Research UK.

The **EpiDREAM study** is supported by the Canadian Institutes for Health Research, Heart and Stroke Foundation of Ontario, Sanofi-Aventis, GlaxoSmithKline and King Pharmaceuticals.

Funding for Andrew Lotery from the **LEEDS** study was provided by the T.F.C. Frost charity and the Macular Disease Society.

The **Rotterdam Study** is supported by the Erasmus Medical Center and Erasmus University Rotterdam; the Netherlands Organization for Scientific Research; the Netherlands Organization for Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly; The Netherlands Heart Foundation; the Ministry of Education, Culture and Science; the Ministry of Health Welfare and Sports; the European Commission (DG XII); and the Municipality of Rotterdam. Support for genotyping was provided by the Netherlands Organization for Scientific Research (NWO) (175.010.2005.011,
911.03.012), the Netherlands Genomics Initiative (NGI)/NWO project nr. 050-060-810 and Research Institute for Diseases in the Elderly (RIDE). Abbas Dehghan is supported by a grant from NWO (Vici, 918-76-619).

The SAS study was funded by the British Heart Foundation.

The Swedish Research Council, the Swedish Heart & Lung Foundation and the Stockholm County Council (ALF) supported the SHEEP study.

SMILE was funded by the Netherlands Heart foundation (NHS 92345). Dr Rosendaal is a recipient of the Spinoza Award of the Netherlands Organisation for Scientific Research (NWO) which was used for part of this work.

The Verona Heart Study was funded by grants from the Italian Ministry of University and Research, the Veneto Region, and the Cariverona Foundation, Verona.

The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, and N01-HC-55022. The authors thank the staff and participants of the ARIC study for their important contributions.

The KORA (Kooperative Gesundheitsforschung in der Region Augsburg) research platform was initiated and financed by the Helmholtz Zentrum München - National Research Center for Environmental Health, which is funded by the German Federal Ministry of Education, Science, Research and Technology and by the State of Bavaria. Part of this work was financed by the German National Genome Research Network (NGFN-2 and NGFNPPlus) and within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ.

Work described in this paper is part of the research portfolio supported by the Leicester NIHR Biomedical Research Unit in Cardiovascular Disease.

This work forms part of the research themes contributing to the translational research portfolio of Barts and the London Cardiovascular Biomedical Research Unit which is supported and funded by the National Institute of Health Research.

The CARDIoGRAM Consortium

Executive Committee: Sekar Kathiresan1,2,3, Muredach P. Reilly4, Nilesh J. Samani5,6, Heribert Schunkert7
Executive Secretary: Jeanette Erdmann

Statisticians: Inke R. König (chair), John R. Thompson (chair), Devin Absher, Li Chen, L. Adrienne Cupples, Eran Halperin, Mingyao Li, Kiran Musunuru, Michael Preuss, Arne Schillert, Gudmar Thorleifsson, Benjamin F. Voight, George A. Wells

ADVANCE: Devin Absher, Themistocles L. Assimes, Stephen Fortmann, Alan Go, Mark Hlatky, Carlos Iribarren, Joshua Knowles, Richard Myers, Thomas Quertermous, Steven Sidney, Neil Risch, Hua Tang

CADomics: Stefan Blankenberg, Tanja Zeller, Arne Schillert, Philipp Wild, Andreas Ziegler, Renate Schnabel, Christoph Sinning, Karl Lackner, Laurence Tiret, Viviane Nicaud, Francois Cambien, Christoph Bickel, Hans J. Rupprecht, Claire Perret, Carole Proust, Thomas Münzel

deCODE: Solveig Gretarsdottir16, Jeffrey R. Gulcher16, Hilma Holm16, Augustine Kong16, Kari Stefansson16,17, Gudmundur Thorgeirsson53,17, Karl Andersen53,17, Gudmar Thorleifsson16, Unnur Thorsteinsdottir16,17

GERMIFS I and II: Jeanette Ermdann7, Marcus Fischer11, Anika Grosshennig12,7, Christian Hengstenberg11, Inke R. König12, Wolfgang Lieb54, Patrick Linsel-Nitschke7, Michael Preuss12,7, Klaus Stark11, Stefan Schreiber55, H.-Erich Wichmann56,58,59, Andreas Ziegler12, Heribert Schunkert7

GERMIFS III (KORA): Zouhair Aherrahrou7, Petra Bruse7, Angela Doering56, Jeanette Erdmann7, Christian Hengstenberg11, Thomas Illig56, Norman Klopp56, Inke R. König12, Patrick Linsel-Nitschke7, Christina Loley12,7, Anja Medack7, Christina Meisinger56, Thomas Meitinger57,60, Janja Nahrstedt12,7, Annette Peters56, Michael Preuss12,7, Klaus Stark11, Arnika K. Wagner7, H.-Erich Wichmann56,58,59, Christina Willenborg12,7, Andreas Ziegler12, Heribert Schunkert7

LURIC/AtheroRemo: Bernhard O. Böhm61, Harald Dobnig62, Tanja B. Grammer63, Eran Halperin22, Michael M. Hoffmann64, Marcus Kleber65, Reijo Laaksonen13, Winfried März63,66,67, Andreas Meinitzer66, Bernhard R. Winkelmann68, Stefan Pilz62, Wilfried Renner66, Hubert Scharnagl66, Tatjana Stojakovic66, Andreas Tomaschitz62, Karl Winkler64

MIGen: Benjamin F. Voight2,3,24, Kiran Musunuru1,2,3, Candace Guiducci3, Noel Burtt3, Stacey B. Gabriel3, David S. Siscovick50, Christopher J. O'Donnell17, Roberto Elosua69, Leena Peltonen49, Veikko Salomaa70, Stephen M. Schwartz50, Olle Melander26, David Altshuler71,3, Sekar Kathiresan1,2,3

OHGS: Alexandre F. R. Stewart14, Li Chen19, Sonny Dandona14, George A. Wells25, Olga Jarinova14, Ruth McPherson14, Robert Roberts14

PennCATH/MedStar: Muredach P. Reilly4, Mingyao Li23, Liming Qu23, Robert Wilensky4, William Matthai4, Hakon H. Hakonarson72, Joe Devaney73, Mary Susan Burnett73, Augusto D. Pichard73, Kenneth M. Kent73, Lowell Satler73, Joseph M. Lindsay73, Ron Waksman73, Christopher W. Knouff74, Dawn M. Waterworth74, Max C. Walker74, Vincent Mooser74, Stephen E. Epstein73, Daniel J. Rader75,4
WTCCC: Nilesh J. Samani⁵,⁶, John R. Thompson¹⁵, Peter S. Braund⁵, Christopher P. Nelson⁵, Benjamin J. Wright⁷⁶, Anthony J. Balmforth⁷⁷, Stephen G. Ball⁷⁸, Alistair S. Hall¹⁰, Wellcome Trust Case Control Consortium

Affiliations

1 Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Boston, MA, USA; 2 Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA; 3 Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; 4 The Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA; 5 Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK; 6 Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, LE3 9QP, UK; 7 Medizinische Klinik II, Universität zu Lübeck, Lübeck, Germany; 8 Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; 9 University of Texas Health Science Center, Human Genetics Center and Institute of Molecular Medicine, Houston, TX, USA; 10 Division of Cardiovascular and Neuronal Remodelling, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, UK; 11 Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, Regensburg, Germany; 12 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Lübeck, Germany; 13 Science Center, Tampere University Hospital, Tampere, Finland; 14 The John & Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Canada; 15 Department of Health Sciences, University of Leicester, Leicester, UK; 16 deCODE Genetics, 101 Reykjavik, Iceland; 17 University of Iceland, Faculty of Medicine, 101 Reykjavik, Iceland; 18 Hudson Alpha Institute, Huntsville, Alabama, USA; 19 Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, 40 Ruskin
Street, Ottawa, Ontario, Canada, K1Y 4W7; 20 Department of Biostatistics, Boston University School of Public Health, Boston, MA USA; 21 National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA; 22 The Blavatnik School of Computer Science and the Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel, and the International Computer Science Institute, Berkeley, CA, USA; 23 Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA; 24 Department of Medicine, Harvard Medical School, Boston, MA, USA; 25 Research Methods, Univ Ottawa Heart Inst; 26 Department of Clinical Sciences, Hypertension and Cardiovascular Diseases, Scania University Hospital, Lund University, Malmö, Sweden; 27 Division of Research, Kaiser Permanente, Oakland, CA, USA; 28 Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; 29 Dept Cardiovascular Medicine, Cleveland Clinic; 30 Medizinische Klinik und Poliklinik, Johannes-Gutenberg Universität Mainz, Universitätsmedizin, Mainz, Germany; 31 Institut für Klinische Chemie und Laboratoriumsmediizin, Johannes-Gutenberg Universität Mainz, Universitätsmedizin, Mainz, Germany; 32 INSERM UMRS 937, Pierre and Marie Curie University (UPMC, Paris 6) and Medical School, Paris, France; 33 University of Texas Health Science Center, Human Genetics Center, Houston, TX, USA; 34 Cardiovascular Health Resarch Unit and Department of Medicine, University of Washington, Seattle, WA USA; 35 Cedars-Sinai Medical Center, Medical Genetics Institute, Los Angeles, CA, USA; 36 Erasmus Medical Center, Department of Epidemiology, Rotterdam, The Netherlands; 37 Boston University, School of Public Health, Boston, MA, USA; 38 University of Minnesota School of Public Health, Division of Epidemiology and Community Health, School of Public Health (A.R.F.), Minneapolis, MN, USA; 39 University of Washington, Cardiovascular Health Research Unit and Department of Medicine, Seattle, WA, USA; 40 Icelandic Heart Association, Kopavogur Iceland; 41 University of Iceland, Reykjavik, Iceland; 42 Laboratory of Epidemiology, Demography, and Biometry, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda MD, USA; 43 University of Washington, Department of Epidemiology, Seattle, WA, USA; 44 University of Washington,
Department of Biostatistics, Seattle, WA, USA; 45 University of Washington, Department of Internal Medicine, Seattle, WA, USA; 46 University of Texas, School of Public Health, Houston, TX, USA; 47 National Heart, Lung and Blood Institute, Framingham Heart Study, Framingham, MA and Cardiology Division, Massachusetts General Hospital, Boston, MA, USA; 48 Center for Health Studies, Group Health, Departments of Medicine, Epidemiology, and Health Services, Seattle, WA, USA; 49 The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; 50 Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle; 51 Boston University Medical Center, Boston, MA, USA; 52 Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands; 53 Department of Medicine, Landspitali University Hospital, 101 Reykjavik, Iceland; 54 Boston University School of Medicine, Framingham Heart Study, Framingham, MA, USA; 55 Institut für Klinische Molekularbiologie, Christian-Albrechts Universität, Kiel, Germany; 56 Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany; 57 Institut für Humangenetik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Umwelt und Gesundheit, Neuherberg, Germany; 58 Institute of Medical Information Science, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Germany; 59 Klinikum Grosshadern, Munich, Germany; 60 Institut für Humangenetik, Technische Universität München, Germany; 61 Division of Endocrinology and Diabetes, Graduate School of Molecular Endocrinology and Diabetes, University of Ulm, Ulm, Germany; 62 Division of Endocrinology, Department of Medicine, Medical University of Graz, Austria; 63 Synlab Center of Laboratory Diagnostics Heidelberg, Heidelberg, Germany; 64 Division of Clinical Chemistry, Department of Medicine, Albert Ludwigs University, Freiburg, Germany; 65 LURIC non profit LLC, Freiburg, Germany; 66 Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Austria; 67 Institute of Public Health, Social and Preventive Medicine, Medical Faculty Manneim, University of Heidelberg, Germany; 68 Cardiology Group Frankfurt-Sachsenhausen, Frankfurt, Germany; 69 Cardiovascular Epidemiology and Genetics Group, Institut
Disclosures

Dr Absher reports receiving an NIH research grant for the ADVANCE study. Dr Assimes reports receiving an NIH research grant for the ADVANCE study. Dr Blankenberg reports receiving research grants from NGFNplus for Atherogenomics and from BMBF for CADomics. Dr Boerwinkle received research support from NIH/National Human Genome Research Institute (NHGRI), GWA for gene-environment interaction effects influencing CGD; NIH/NHLBI, Molecular epidemiology of essential hypertension; NIH/NHLBI, Genome-wide association for loci influencing coronary heart disease; NIH/NHLBI, Genetics of hypertension-associated treatment; NIH/NHLBI, Modeling DNA diversity in reverse cholesterol transport; NIH/NHLBI, 20-year changes in fitness and cardiovascular disease risk; NIH/NHLBI, Genetic epidemiology of sodium-lithium countertransport; NIH/National Institute of General Medical Sciences (NIGMS), Pharmacogenomic evaluation of antihypertensive responses; NIH/NIGMS, Genomic approaches to common chronic disease; NIH/NHLBI, Genes of
the CYP450-derived eicosanoids in subclinical atherosclerosis; NIH/NHGRI-University of North Carolina, Chapel Hill, Genetic epidemiology of causal variants across the life course; and NIH/NHLBI, Building on GWAS for NHLBI-diseases: the CHARGE consortium. Dr Cupples reports receiving research grants from NIH/NHLBI, The Framingham Heart Study; NIH/NHLBI, Genome-wide association study of cardiac structure and function; NIH/NHLBI, Functional evaluation of GWAS loci for cardiovascular intermediate phenotypes; and NIH/NHLBI, Building on GWAS for NHLBI-diseases: the CHARGE consortium. Dr Halperin reports receiving research grants from NIH, subcontract Genome-wide association study of Non Hodgkin’s lymphoma; ISF, Efficient design and analysis of disease association studies; EU, consultant AtheroRemo; NSF, Methods for sequencing based associations; BSF, Searching for causal genetic variants in breast cancer and honoraria from Scripps Institute, UCLA. Dr Halperin also reports ownership interest in Navigenics. Dr Hengstenberg reports receiving research grants for EU Cardiogenics. Dr Holm reports receiving a research grant from NIH; providing expert witness consultation for the district court of Reykjavik; serving as member of the editorial board for decodeme, a service provided by deCODE Genetics; and employment with deCODE Genetics. Dr Li reports receiving research grant R01HG004517 and other research support in the form of coinvestigator on several NIH-funded grants and receiving honoraria from National Cancer Institute Division of Cancer Epidemiology and Genetics. Dr McPherson reports receiving research grants from Heart & Stroke Funds Ontario, CIHR, and CFI. Dr Rader reports receiving research grant support from GlaxoSmithKline. Dr Roberts reports receiving research grants from the Cystic Fibrosis Foundation, NIH, and Cancer Immunology and Hematology Branch; membership on the speakers bureau for AstraZeneca; receiving honoraria from Several; and serving as consultant/advisory board member for Celera. Dr Stewart reports receiving research grant support from CIHR, Genome-wide scan to identify coronary artery disease genes, and CIHR, Genetic basis of salt-sensitive hypertension in humans; other research support from CFI: Infrastructure support; and honoraria from the Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan. Dr Thorleifsson is an employee of deCODE Genetics. Dr Thorsteinsdottir reports
receiving research grants from NIH and EU; serving as an expert witness for a US trial; having stock options at deCODE Genetics; and having employment with deCODE Genetics. Dr Kathiresan reports receiving research grants from Pfizer, Discovery of type 2 diabetes genes, and Alnylam, Function of new lipid genes, and serving as consultant/advisory board member for DAIICHI SANKYO Merck. Dr Reilly reports receiving research grant support from GlaxoSmithKline. Dr Schunkert reports receiving research grants from the EU, project Cardiogenics; NGFN, project Atherogenomics; and CADnet BMBF. M. Preuss, L. Chen, and Drs König, Thompson, Erdmann, Hall, Laaksonen, März, Musunuru, Nelson, Burnett, Epstein, O’Donnell, Quertermous, Schillert, Stefansson, Voight, Wells, Ziegler, and Samani have no conflicts to disclose. Genotyping of PennCATH and MedStar was supported by Glaxo-SmithKline. Dawn M. Waterworth, Max C. Walker, and Vincent Mooser are employees of GlaxoSmithKline. PennCath/MedStar investigators acknowledge the support of Eliot Ohlstein, Dan Burns and Allen Roses at GlaxoSmithKline.
Table 1. Description of Linear Association between SNPs of Top Loci and hs-cTnT

<table>
<thead>
<tr>
<th>rs No.</th>
<th>CHR</th>
<th>Position</th>
<th>Variant</th>
<th>MAF</th>
<th>P-value</th>
<th>β (95% CI)</th>
<th>Closest Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs10091374</td>
<td>8</td>
<td>71549458</td>
<td>A/T</td>
<td>0.483</td>
<td>9.06×10⁻³</td>
<td>-0.04 (-0.06, -0.03)</td>
<td>70.9 kb from NCOA2</td>
</tr>
<tr>
<td>rs6989313</td>
<td>8</td>
<td>71545911</td>
<td>C/T</td>
<td>0.489</td>
<td>2.33×10⁻³</td>
<td>-0.04 (-0.06, -0.03)</td>
<td>67.3 kb from NCOA2</td>
</tr>
<tr>
<td>rs10091864</td>
<td>8</td>
<td>71521657</td>
<td>C/G</td>
<td>0.446</td>
<td>7.89×10⁻³</td>
<td>-0.04 (-0.06, -0.03)</td>
<td>43.1 kb from NCOA2</td>
</tr>
<tr>
<td>rs2341260</td>
<td>1</td>
<td>73826648</td>
<td>T/C</td>
<td>0.122</td>
<td>3.78</td>
<td>0.05 (0.03, 0.07)</td>
<td>437.6 kb from LRRIQ3</td>
</tr>
<tr>
<td>rs6983473</td>
<td>8</td>
<td>27961807</td>
<td>A/T</td>
<td>0.239</td>
<td>4.35×10⁻⁶</td>
<td>-0.04 (-0.06, -0.02)</td>
<td>C8orf80 (intron)</td>
</tr>
<tr>
<td>rs4733271</td>
<td>8</td>
<td>31686548</td>
<td>A/T</td>
<td>0.267</td>
<td>4.56×10⁻⁶</td>
<td>0.04 (0.02,0.06)</td>
<td>NRG1 (intron)</td>
</tr>
<tr>
<td>rs172166</td>
<td>6</td>
<td>28128799</td>
<td>C/G</td>
<td>0.244</td>
<td>4.57×10⁻⁶</td>
<td>-0.04 (-0.06, -0.02)</td>
<td>5.6 kb from OR2B7P</td>
</tr>
<tr>
<td>rs1526687</td>
<td>2</td>
<td>52567311</td>
<td>T/G</td>
<td>0.238</td>
<td>5.30×10⁻⁵</td>
<td>0.04 (0.02, 0.06)</td>
<td>75.7 kb from LOC129656</td>
</tr>
<tr>
<td>rs9393881</td>
<td>6</td>
<td>28131730</td>
<td>C/G</td>
<td>0.245</td>
<td>5.90×10⁻⁵</td>
<td>-0.04 (-0.06, -0.02)</td>
<td>1.7 kb from OR2B8P</td>
</tr>
<tr>
<td>rs935638</td>
<td>2</td>
<td>168224945</td>
<td>A/G</td>
<td>0.349</td>
<td>6.06×10⁻⁵</td>
<td>0.04 (0.02, 0.06)</td>
<td>53.6 kb from LOC401018</td>
</tr>
<tr>
<td>rs10106858</td>
<td>8</td>
<td>71611999</td>
<td>T/C</td>
<td>0.377</td>
<td>6.30×10⁻⁵</td>
<td>0.04 (0.02, 0.05)</td>
<td>30.4 kb from LOC100130225</td>
</tr>
<tr>
<td>rs605920</td>
<td>18</td>
<td>61035898</td>
<td>C/G</td>
<td>0.384</td>
<td>6.34×10⁻⁶</td>
<td>-0.04 (-0.05, -0.02)</td>
<td>532.6 kb from CDH7</td>
</tr>
<tr>
<td>rs899967</td>
<td>18</td>
<td>59010301</td>
<td>C/G</td>
<td>0.334</td>
<td>6.57×10⁻⁵</td>
<td>-0.04 (-0.05, -0.02)</td>
<td>BCL2 (intron)</td>
</tr>
<tr>
<td>rs11886999</td>
<td>2</td>
<td>96205520</td>
<td>T/C</td>
<td>0.205</td>
<td>7.88×10⁻⁶</td>
<td>0.04 (0.02, 0.06)</td>
<td>8.8 kb from STARD7</td>
</tr>
<tr>
<td>rs263606</td>
<td>9</td>
<td>17086753</td>
<td>T/C</td>
<td>0.487</td>
<td>9.85×10⁻⁶</td>
<td>0.03 (0.02, 0.05)</td>
<td>38.2 kb from CNTLN</td>
</tr>
</tbody>
</table>

CHR indicated chromosome; Variant, coded/non-coded allele; MAF, minor allele frequency.

12 additional regions were detected with suggestive evidence at p-values < 1×10⁻⁵. Table 1 provides details about these loci identified in the linear model. Two of these 12 loci were identified by a single intronic SNP: NRG1 (neuregulin 1) and BCL2 (B-cell lymphoma 2). Six loci were identified by intergenic SNPs close to LRRIQ3 (leucine-rich repeats and IQ motif containing 3), OR2B7P (olfactory receptor, family 2, subfamily B, member 7 pseudogene), OR2B8P (olfactory receptor, family 2, subfamily B, member 8 pseudogene), CDH7 (cadherin 7, type 2), STARD7 (StAR-related lipid transfer (START) domain containing 7) and CNTLN (centlein, centrosomal protein); the distance to the nearest gene ranged from 1.7 kb to 437.6 kb. The remaining four loci were identified either on or near hypothetical genes.
Table 2. Description of Logistic Association between SNPs of Top Loci and hs-cTnT

<table>
<thead>
<tr>
<th>rs No.</th>
<th>CHR</th>
<th>Position</th>
<th>Variant</th>
<th>MAF</th>
<th>P-value</th>
<th>OR (95% CI)</th>
<th>Closest Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs12564445</td>
<td>1</td>
<td>199612110</td>
<td>A/G</td>
<td>0.197</td>
<td>4.73 x 10^-8</td>
<td>2.33 (1.72, 3.16)</td>
<td>TNNT2 (intron)</td>
</tr>
<tr>
<td>rs3020556</td>
<td>1</td>
<td>199609738</td>
<td>C/G</td>
<td>0.197</td>
<td>5.51 x 10^-8</td>
<td>0.43 (0.32, 0.58)</td>
<td>TNNT2 (intron)</td>
</tr>
<tr>
<td>rs12098973</td>
<td>11</td>
<td>131312381</td>
<td>A/G</td>
<td>0.181</td>
<td>1.15 x 10^-6</td>
<td>0.46 (0.33, 0.63)</td>
<td>HNT (intron)</td>
</tr>
<tr>
<td>rs1198872</td>
<td>2</td>
<td>10820863</td>
<td>T/C</td>
<td>0.340</td>
<td>2.47 x 10^-6</td>
<td>2.04 (1.51, 2.74)</td>
<td>ATP6V1C2 (intron)</td>
</tr>
<tr>
<td>rs12725198</td>
<td>1</td>
<td>15952758</td>
<td>A/G</td>
<td>0.226</td>
<td>3.15 x 10^-6</td>
<td>1.85 (1.43, 2.39)</td>
<td>5.1 kb from FBLIM1</td>
</tr>
<tr>
<td>rs13083990</td>
<td>3</td>
<td>123497256</td>
<td>T/C</td>
<td>0.341</td>
<td>3.64 x 10^-6</td>
<td>2.66 (1.76, 4.02)</td>
<td>9.2 kb from CASR</td>
</tr>
<tr>
<td>rs2201728</td>
<td>4</td>
<td>78654477</td>
<td>A/G</td>
<td>0.479</td>
<td>4.68 x 10^-6</td>
<td>0.32 (0.20, 0.52)</td>
<td>CXCL13 (intron)</td>
</tr>
<tr>
<td>rs9321637</td>
<td>6</td>
<td>138308378</td>
<td>T/C</td>
<td>0.119</td>
<td>8.24 x 10^-6</td>
<td>0.46 (0.32, 0.64)</td>
<td>62.2 kb from TNFAIP3</td>
</tr>
<tr>
<td>rs17724172</td>
<td>18</td>
<td>3502216</td>
<td>T/C</td>
<td>0.193</td>
<td>8.79 x 10^-6</td>
<td>0.49 (0.36, 0.67)</td>
<td>DLGAP1 (intron)</td>
</tr>
<tr>
<td>rs1766963</td>
<td>10</td>
<td>125197491</td>
<td>T/C</td>
<td>0.132</td>
<td>8.83 x 10^-6</td>
<td>2.28 (1.58, 3.28)</td>
<td>218.4 kb from GPR26</td>
</tr>
</tbody>
</table>

CHR indicated chromosome; Variant, coded/non-coded allele; MAF, minor allele frequency.

The suggestive loci identified in the logistic model were either on or near genes HNT (neurotrimin), ATP6V1C2 (ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C2), FBLIM1 (filamin binding LIM protein 1), CASR (calcium-sensing receptor), CXCL13 (chemokine (C-X-C motif) ligand 13), TNFAIP3 (tumor necrosis factor, alpha-induced protein 3), DLGAP1 (discs, large (Drosophila) homolog-associated protein 1) or GPR26 (G protein-coupled receptor 26). Supplemental table 2 provides details about these loci. Cohort-specific effects of the top SNP and the QQ plot are provided in Supplemental Figure 2.
Figure 1. Regional association plot for the genome-wide significant marker, rs10091374, in the two-stage meta-analysis of European Americans and African Americans.
Figure 2

(A) Plot of the expected and observed –log p-values from meta-analysis of participants of European Americans in logistic analysis. (B) The forest plot shows meta-analyses of the association between rs12564445 and extremely-high hs-cTnT in logistic analysis (EA indicates European Americans).

<table>
<thead>
<tr>
<th>Study</th>
<th>MAF</th>
<th>Beta</th>
<th>SE</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIC EA</td>
<td>0.194</td>
<td>0.946</td>
<td>0.129</td>
<td>2.34E-12</td>
</tr>
<tr>
<td>CHS EA</td>
<td>0.207</td>
<td>0.372</td>
<td>0.356</td>
<td>3.09E-01</td>
</tr>
<tr>
<td>Summary EA</td>
<td>0.197</td>
<td>0.848</td>
<td>0.155</td>
<td>4.73E-10</td>
</tr>
</tbody>
</table>