I_Ks in Heart and Hearing, the Ear Can Do with Less than the Heart

Zahurul A. Bhuiyan, MD, PhD; Arthur A.M. Wilde, MD, PhD

In cardiac myocytes, the Kv7.1 (α subunit, encoded by KCNQ1) assembles with the minK (β-subunit, encoded by KCNE1) and forms the I_Ks channel (slowly activating delayed rectifier potassium channel/current). I_Ks is responsible for the later phase of the repolarization process in the cardiac action potential and is highly sensitive to adrenergic stimuli, enabling action potential shortening during increased heart rate. The same I_Ks channel in the inner ear maintains the homeostasis of the K⁺ in the endolymph and thereby keeps the hearing function intact.1

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the Laboratoire de Génétique Moléculaire, Service de Généétique Médicale, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland (Z.A.B.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (A.A.M.W.); and Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia (A.A.M.W.).

Correspondence to Arthur A.M. Wilde, MD, PhD. Department of Clinical and Experimental Cardiology, Academic Medical Center, University Medical Center, University of Amsterdam, PO Box 22700, 1100DE, Amsterdam, The Netherlands. E-mail a.a.wilde@amc.uva.nl (Circ Cardiovasc Genet. 2013;6:141-143.)

© 2013 American Heart Association, Inc.

Circ Cardiovasc Genet is available at http://circgenetics.ahajournals.org

DOI: 10.1161/CIRCGENETICS.113.000143

Subsequently, multiple reports of autosomal recessive (AR) LQT1 without any auditory phenotype have appeared.10-14

In 2007, we have reported several children with AR LQT1 in the southern part of Saudi Arabia.14 On molecular analysis, we found a homozygous mutation c.387-5T>A in the intron 1 (ie, upstream of exon-2) of the KCNQ1 gene, which caused skipping of exon-2, leading to aberrant KCNQ1 mRNA and eventually affecting the I_Ks property. None of our patients with the homozygous mutation had any hearing defect, but, on the contrary, patients with exon-2 skipping mutation from Germany had JLNS, that is, patients had both the cardiac and auditory phenotype.15 Molecular analysis led us to decipher the pathophysiology into the discordance of phenotypes. In the patients from Saudi Arabia, despite exon-2 skipping, ≈10% of the KCNQ1 allele transcribed normally, and eventually, patients still had ≈10% of normal I_Ks, which was the only difference between the patients reported by Zehelein et al (2006) and Bhuiyan et al (2007).14,15 These findings could be considered a direct proof about the I_Ks dose requirement in maintaining the hearing and lead to the conclusion that the ear clearly needs less I_Ks than the heart to function properly.

So, it is now well-established fact that homozygous/compound heterozygous mutations in the KCNQ1 gene could cause a cardiac only phenotype (ie, AR LQT1), but, the question remains whether this cardiac only phenotype is comparable to the patients who harbor only a single mutation. In case, if there exists any discordance in cardiac phenotype severity, to what extent the severity implies? This, perhaps, intrigued Giudicessi and Ackerman16 to conduct the study that they published in the present issue of this journal. Clinical and ECG data from the patients discussed above showed that all patients with homozygous mutations (with or without hearing defect) had baseline (without provocation) QTc >500 ms and also had comparatively severe cardiac events.14,15 But, a (genotyped) cohort study on this matter was not available. Giudicessi and Ackerman16 conducted a retrospective analysis among the homozygous (or compound heterozygous) mutation carriers in the KCNQ1 gene. The authors also looked at the mutation types and their location, which might influence the cardiac or hearing phenotype.16

Of 15 patients with biallelic (homozygous/compound heterozygous), KCNQ1 mutations from the Mayo Clinic’s LQT syndrome clinic, only 4 patients had JLNS, and the remaining 11 patients were classified as AR LQT1.16 To increase the numbers, they included published clinical and genotype data.12,13 Nontruncating mutations (missense or in-frame small deletions) were differentiated from truncating (nonsense, frame-shift, or splice site) mutations; patients with JLNS had significantly more truncating mutations compared with AR LQT1 cases, which probably is not unexpected.
because functional analysis results were more in favor for such finding.9,14,15 Mutation location did not make any difference that could make a differentiation between the patients between JLNS and recessive LQT1.16 Patients with AR LQT1 had more frequently a family history of LQT-related serious events compared with patients with JLNS, and they tended to be more seriously affected (Table 2 in ref 16); perhaps, this requires further study in a larger cohort.

We attempted to summarize the present (ref 16) and earlier published data in NCBI into a general scheme (Figure). Homozygosity (or biallelic compound heterozygosity) of truncating nonsense mutations (including insertions/deletions) will give rise to JLNS. Homozygosity of an exon skipping mutation will also lead to JLNS, when there is no residual protein production. In case of incomplete exon skipping, with residual protein levels as low as 10%, will result in AR LQT1.14 Heterozygosity of any of these mutations will usually lead to a milder phenotype. Homozygosity (or biallelic compound heterozygosity) of missense mutations that lead to a protein product that does not traffic to the cell membrane (or is subject to nonsense mediated decay) will lead to JLNS. In contrast, homozygosity (or biallelic compound heterozygosity) of missense mutations that impact on channel function and do express into the membrane lead to AR LQT1. Ala300Thr mutation in the KCNQ1 gene may serve, in this context, as an example in not causing a total loss of I\textsubscript{Ks}.9 Apparently, in homozygous Ala300Thr mutation carriers, residual I\textsubscript{Ks} through aberrant channels is enough to maintain the K\textsuperscript{+} homeostasis in the inner ear endolymph to keep auditory function intact.9 Heterozygosity of a missense mutation will usually lead to a severe phenotype, when their product trafficks properly and stably expresses in the cell membrane, and will lead to a milder phenotype, when their product does not make it to the cell membrane (completely or significantly lesser extent or less stable if transported) for whatever reason (Figure). Complicating factors are of course the modifying genes (eg, NOS1AP), and the explored and yet unexplored various genetic and interacting factors influencing expression of KCNQ1 protein.17,18

On the basis of this reasoning, one could potentially draw conclusions on the functional characteristics of the several variants identified in the Mayo cohort. Hence, the missense mutations identified in their JLNS cases that associate with a nonsense mutation most likely do not make it to the membrane (ie, C122Y and D202N), the caveat being that there is differential expression in the heart and the ear. To the contrary, missense mutations in AR LQT1 cases that associate with a nonsense mutation (or are homozygous) should traffick to the membrane (G179S, G568R, V524G, K362R, V215M). It is likely that the clinical phenotype of the heterozygous carriers of the former group (C122Y and D202N) will be less severe and comparable to nonsense mutations, than the phenotype of the latter group (mutations that do traffick to the membrane).

**Disclosures**

Dr Wilde is a member of the Advisory Board of Sorin.

**References**


**Key Words:** Editorials ■ genetics ■ genotype ■ long QT syndrome ■ potassium channels
IK$_s$ in Heart and Hearing, the Ear Can Do with Less than the Heart
Zahurul A. Bhuiyan and Arthur A.M. Wilde

_Circ Cardiovasc Genet._ 2013;6:141-143
doi: 10.1161/CIRCGENETICS.113.000143
_Circulation: Cardiovascular Genetics_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1942-325X. Online ISSN: 1942-3268

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circgenetics.ahajournals.org/content/6/2/141

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Cardiovascular Genetics_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Cardiovascular Genetics_ is online at:
http://circgenetics.ahajournals.org//subscriptions/