Effect of Bile Acid Sequestrants on the Risk of Cardiovascular Events

A Mendelian Randomization Analysis

Stephanie Ross, MSc, PhD; Matthew D’Mello, MSc; Sonia S. Anand, MD, PhD, FRCPC; John Eikelboom, MBBS, MSc; CARDIoGRAMplusC4D Consortium®; Alexandre F.R. Stewart, PhD; Nilesh J. Samani, MD, FRCP; Robert Roberts, MD, FRCPC; Guillaume Paré, MD, MSc;

Background—Statins lower low-density lipoprotein cholesterol (LDL-C) and risk of coronary artery disease (CAD), but they may be ineffective or not tolerated. Bile acid sequestrants (BAS) reduce LDL-C, yet their clinical efficacy on CAD remains controversial.

Methods and Results—We conducted a systematic review and meta-analysis of randomized controlled trials to assess the effect of cholestyramine and colesevelam. We then used Mendelian randomization to estimate the effect of BAS on reducing the risk of CAD. First, we quantified the effect of rs4299376 (ABCG5/ABCG8), which affects the intestinal cholesterol absorption pathway targeted by BAS and then we used these estimates to predict the effect of BAS on CAD. Nineteen randomized controlled trials with a total of 7021 study participants were included. Cholestyramine 24 g/d was associated with a reduction in LDL-C of 23.5 mg/dL (95% confidence interval [CI] = 26.8–20.2; N=3806) and a trend toward reduced risk of CAD (odds ratio 0.81, 95% CI 0.70–1.02; P=0.07; N=3806), whereas colesevelam 3.75 g/d was associated with a reduction in LDL-C of 22.7 mg/dL (95% CI = 28.3–17.2; N=759). Based on the findings that rs4299376 was associated with a 2.75 mg/dL decrease in LDL-C and a 5% decrease in risk of CAD outcomes, we estimated that colesteveam was associated with an odds ratio for CAD of 0.63 (95% CI 0.52–0.77; P=6.3x10^-6) and colesevelam with an odds ratio of 0.64 (95% CI 0.52–0.79, P=4.3x10^-5), which were not statistically different from BAS clinical trials (P>0.05).

Conclusions—The cholesterol lowering effect of BAS may translate into a clinically relevant reduction in CAD.

(Circ Cardiovasc Genet. 2015;8:618-627. DOI: 10.1161/CIRCGENETICS.114.000952.)

Key Words: cholesterol-lowering drugs ■ coronary artery disease ■ genetics ■ lipids ■ Mendelian randomization

Elevated plasma levels of low-density lipoprotein cholesterol (LDL-C) are a well-established risk factor of cardiovascular disease (CVD). Current guidelines recommend that statin therapy should be used in select groups of patients with atherosclerotic CVD in primary and secondary prevention settings. However, statins may not be fully effective in lowering LDL-C or well tolerated, and therefore, patients may require additional or alternative lipid-lowering treatments.

Clinical Perspective on p 627

Bile acid sequestrants (BAS) are large polymers that bind to bile salts in the small intestine, preventing their reabsorption into the enterohepatic circulation pathway. The resulting depletion of bile acids leads to increased hepatic metabolism of cholesterol for bile salt synthesis, thereby lowering plasma LDL-C levels. Three BAS have been approved for clinical use: cholestyramine and colestipol (first generation) and colesvelem hydrochloride (colesvelem; second generation). Colesevelam was developed to overcome gastrointestinal intolerance associated with the first-generation BAS. Three randomized controlled trials (RCTs) have evaluated the efficacy of cholestyramine for cardiovascular prevention, but results have been inconclusive. Although most of these trials have demonstrated that treatment with cholestyramine
Global Lipids Genetics Consortium

Data on the genetic association between the rs4299376 SNP and plasma lipid levels were obtained from a previously published genome-wide association study. In brief, Teslovich et al (2011) performed a meta-analysis of 46 lipid genome-wide association study assessing common variants associated with serum lipids (LDL-C, high density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and triglycerides). A total of 46 studies and 91 285 individuals of European descent were analyzed for the genetic association with LDL-C, whereas data from 95 708, 95 992 and 92 410 individuals were available for HDL-C, TC, and triglycerides, respectively.

CARDIoGRAMplusC4D Consortium

Data on the genetic association between the rs4299376 SNP (ABCG5/8) and the risk of CAD was obtained from the CARDIoGRAMplusC4D Consortium. Briefly, the CARDIoGRAMplusC4D Consortium performed a meta-analysis of 63 746 cases of CAD and 130 681 controls. CAD outcomes were defined as one of the following: myocardial infarction (MI), >50% stenosis in at least one coronary vessel at angiography, history of percutaneous transluminal coronary angioplasty or coronary artery bypass graft surgery, angina, or death caused by CAD. For the association between the rs4299376 SNP and CAD outcomes, the lipid-lowering allele was used as reference throughout the article.

Cholesterol Treatment Trials’ Collaboration

As a sensitivity analysis, we confirmed the predicted effect of BAS on CAD using data from the Cholesterol Treatment Trials’ Collaboration. Briefly, the CTT was a prospective meta-analysis of 169 138 individuals from 26 statin RCTs that assessed the association between the change in LDL-C with statin therapy and the reduction in risk of CVD. Over a period of 5 years, there were a total of 24 323 major vascular events, which was defined as the first occurrence of coronary death or nonfatal MI, coronary revascularization, or stroke.

Statistical Analysis

To calculate the effect of BAS on plasma lipids levels, the mean change-from-baseline of plasma lipids in the 24 g/d cholestyramine treatment group and the 3.75 g/d colesevelam group were compared with the mean differences in the placebo group. Meta-analyses were performed using an inverse variance random effect meta-analysis. Unless otherwise specified, a correlation coefficient (r) of 0.5 for the difference in the mean change from baseline was assumed for all analyses. Thus, the r was varied by 0.3 and 0.7 for all the relevant studies to determine whether this altered the reported estimates (Figures II–V in the Data Supplement). Refer to Methods in the Data Supplement for further details.

Simulations were performed to predict the effect of 24 g/d cholestyramine on plasma lipid profiles (HDL-C, TC, and triglycerides) using the known genetic associations of rs4299376 SNP with lipids and CAD. To do so, we adapted the method from Sofat et al to match the genetic effects to the effect of cholestyramine 24 g/d on LDL-C, taking into account the uncertainty of both the genetic and drug effect estimates. Refer to Methods in the Data Supplement for more information. To validate whether the rs4299376 SNP had a similar effect on plasma lipid profiles as cholestyramine, the predicted effects of cholestyramine on plasma levels of HDL-C, TC, and triglycerides were estimated using genetic data. These predicted estimates were then compared with known effects of cholestyramine on the same lipids fractions from clinical data. Next, the predicted effect of cholestyramine on the risk of cardiovascular outcomes was projected using data from the genetic association of rs4299376 with CAD. This was then compared with the effect of cholestyramine on CAD from the only outcome trial of cholestyramine, the Lipid Research Clinics Coronary Primary Prevention Trial (LRCCPPT). Figure 1 represents the schematic representation of the Mendelian randomization design. As a sensitivity analysis, the predicted effect of cholestyramine on CAD was also estimated using data from the CTT.

Methods

Search Strategy and Study Selection of Clinical Trials

A structured search of RCTs evaluating the effects of BAS on markers of cardiovascular risk or clinical outcomes was conducted in the PubMed database. The following terms were used to search all clinical trial registries and databases: colesevelam; cholestyramine; colestipol; placebo; and randomized controlled trials. Only studies with a double-blinded, placebo-controlled trial design in adults aged 18 years that assessed the effect of BAS (ie, cholestyramine, colestipol, and colesevelam) in comparison with a placebo were included. Refer to Methods in the Data Supplement for more details.
I significant heterogeneity among the pooled changes in LDL-C of TC by 50.7 mg/dL (95% CI −89.9, −11.5). There was significant heterogeneity among the pooled changes in LDL-C by 53.4 mg/dL (95% CI −91.8, −15.0) and a decrease that cholestyramine treatment resulted in a mean decrease of 7.1 mg/dL with significant heterogeneity among pooled estimates owing to a lack of reported data from clinical trials, the results of the colestipol meta-analysis are described in Methods in the Data Supplement. Owing to the lack of reported data from clinical trials, the results of the colestipol meta-analysis are described in Methods in the Data Supplement and Table I in the Data Supplement.

Results

Study Selection

The structured literature search of PubMed databases derived a total of 420 citations, and 19 studies were identified for inclusion in this review. Figure VI in the Data Supplement contains a flow diagram of the study selection process. Owing to the lack of reported data from clinical trials, the results of the colestipol meta-analysis are described in Methods in the Data Supplement and Table I in the Data Supplement.

Randomized Controlled Trials of Colesevelam

We identified a total of 6 RCTs comprising 4598 hyperlipidemia and 883 participants with type 2 diabetes mellitus. Among all of these participants, the average age was 55.5 years, 51% were women, and 62% were European (Table). Seven RCTs comprising 767 study participants evaluating the effect of coleselam 3.75 g daily compared with matching placebo were used in the primary analysis (Figure 3).

The colestipol meta-analysis that assessed the effect of statin therapy on the risk of CVD outcomes among 5 trials that compared more intensive to less intensive statin therapy (N=39612) and 21 trials that compared statin to a control (N=129526). This estimate was similarly compared with the effect of BAS on cardiovascular outcomes reported in the LRCCPPT, thus testing whether the effect of BAS on reduction of CAD event was consistent with the one observed with statins, after taking into account the differences in LDL-C lowering efficacy. The same analyses were performed for 3.75 g/d coleselam. Refer to Methods in the Data Supplement for more information. All statistical analyses were performed using R.

Treatment with colesevelam resulted in a mean decrease of LDL-C by 22.7 mg/dL (95% CI −28.3, −17.2) with significant heterogeneity among the pooled change in LDL-C (F 93.3% and P for heterogeneity, 0.032). Colesevelam treatment was also associated with a decrease in TC by 19.2 mg/dL (95% CI −24.4, −14.0), whereas the effect was attenuated in LDL-C and triglycerides (0.30 mg/dL [95% CI −0.14, 2.0] and 9.8 mg/dL [95% CI −1.8, 21.4], respectively). Five pooled studies (628 participants) demonstrated a nonsignificant effect in the change of HDL-C and triglycerides (2.6 mg/dL [95% CI −1.2, 6.5] and 3.1 mg/dL [95% CI −15.5, 21.7], respectively).

One study (80 participants) reported a significant decrease of apoB by 44.0 mg/dL (95% CI −61.7, −26.3) and a nonsignificant effect in the change of apoA (10.0 mg/dL [95% CI −3.9, 23.9]). One RCT reported the effect of cholestyramine (24 g/d) on cardiovascular outcomes,8 randomizing 3806 patients, 342 of whom experienced an event. Cholestyramine did not significantly reduce the composite of cardiovascular death or myocardial infarction (OR 0.81, 95% CI 0.65–1.02, P=0.07), cardiovascular mortality (OR 0.78, 95% CI 0.48–1.27, P=0.322), or myocardial infarction (OR 0.81, 95% CI 0.63–1.03, P=0.082).

Randomized Controlled Trials of Cholestyramine

We identified 10 trials with a total of 1142 participants with hyperlipidemia and 883 participants with type 2 diabetes mellitus. Among all of these participants, the average age was 55.5 years, 51% were women, and 62% were European (Table). Seven RCTs comprising 767 study participants evaluating the effect of coleselam 3.75 g daily compared with matching placebo were used in the primary analysis (Figure 3). Treatment with coleselam resulted in a mean decrease of LDL-C by 22.7 mg/dL (95% CI −28.3, −17.2) with significant heterogeneity among the pooled change in LDL-C (F 56.95% and P for heterogeneity, 0.032). Colesevelam treatment was also associated with a decrease in TC by 19.2 mg/dL (95% CI −24.4, −14.0), whereas the effect was attenuated in LDL-C and triglycerides (0.30 mg/dL [95% CI −0.14, 2.0] and 9.8 mg/dL [95% CI −1.8, 21.4], respectively). Five pooled studies (628 participants) demonstrated a nonsignificant effect in the change of apoA (1.8 mg/dL [95% CI −0.8, 4.5]). We were unable to conduct subgroup analyses to explore the presence of heterogeneity among pooled estimates owing to a lack of data.

Randomized Controlled Trials of Colesevelam

We identified 10 trials with a total of 1142 participants with hyperlipidemia and 883 participants with type 2 diabetes mellitus. Among all of these participants, the average age was 55.5 years, 51% were women, and 62% were European (Table). Seven RCTs comprising 767 study participants evaluating the effect of coleselam 3.75 g daily compared with matching placebo were used in the primary analysis (Figure 3). Treatment with coleselam resulted in a mean decrease of LDL-C by 22.7 mg/dL (95% CI −28.3, −17.2) with significant heterogeneity among the pooled change in LDL-C (F 56.95% and P for heterogeneity, 0.032). Colesevelam treatment was also associated with a decrease in TC by 19.2 mg/dL (95% CI −24.4, −14.0), whereas the effect was attenuated in LDL-C and triglycerides (0.30 mg/dL [95% CI −0.14, 2.0] and 9.8 mg/dL [95% CI −1.8, 21.4], respectively). Five pooled studies (628 participants) demonstrated a nonsignificant effect in the change of HDL-C and triglycerides (2.6 mg/dL [95% CI −1.2, 6.5] and 3.1 mg/dL [95% CI −15.5, 21.7], respectively).

One study (80 participants) reported a significant decrease of apoB by 44.0 mg/dL (95% CI −61.7, −26.3) and a nonsignificant effect in the change of apoA (10.0 mg/dL [95% CI −3.9, 23.9]). One RCT reported the effect of cholestyramine (24 g/d) on cardiovascular outcomes,8 randomizing 3806 patients, 342 of whom experienced an event. Cholestyramine did not significantly reduce the composite of cardiovascular death or myocardial infarction (OR 0.81, 95% CI 0.65–1.02, P=0.07), cardiovascular mortality (OR 0.78, 95% CI 0.48–1.27, P=0.322), or myocardial infarction (OR 0.81, 95% CI 0.63–1.03, P=0.082).

Randomized Controlled Trials of Colesevelam

We identified 10 trials with a total of 1142 participants with hyperlipidemia and 883 participants with type 2 diabetes mellitus. Among all of these participants, the average age was 55.5 years, 51% were women, and 62% were European (Table). Seven RCTs comprising 767 study participants evaluating the effect of coleselam 3.75 g daily compared with matching placebo were used in the primary analysis (Figure 3). Treatment with coleselam resulted in a mean decrease of LDL-C by 22.7 mg/dL (95% CI −28.3, −17.2) with significant heterogeneity among the pooled change in LDL-C (F 56.95% and P for heterogeneity, 0.032). Colesevelam treatment was also associated with a decrease in TC by 19.2 mg/dL (95% CI −24.4, −14.0), whereas the effect was attenuated in LDL-C and triglycerides (0.30 mg/dL [95% CI −0.14, 2.0] and 9.8 mg/dL [95% CI −1.8, 21.4], respectively). Five pooled studies (628 participants) demonstrated a nonsignificant effect in the change of HDL-C and triglycerides (2.6 mg/dL [95% CI −1.2, 6.5] and 3.1 mg/dL [95% CI −15.5, 21.7], respectively).
Predicted Effects of BAS on Plasma Lipids Using Genetic Data

Teslovich et al (2010) confirmed the association between the rs4299376 SNP and plasma lipid levels. The rs4299376 polymorphism was significantly associated with a decrease in LDL-C of 2.75 mg/dL per allele (95% CI –3.14, –2.36; \(P=1.73\times10^{-47} \)), a decrease in TC of 3.01 (95% CI –3.44, –2.58) mg/dL per allele (\(P=4.0\times10^{-45} \)).
triglycerides of 1.08 (95% CI −1.80, −0.36) mg/dL per allele ($P=0.003$), and had a null effect on HDL-C levels (0.05 mg/dL per allele, 95% CI −0.09, 0.19; $P=0.212$). We also explored whether the rs4299376 SNP had potential pleiotropic effects on the risk of diabetes mellitus or on the change in glycohemoglobin (HbA1c), fasting glucose, systolic blood pressure, diastolic blood pressure, and body mass index using data from the DIAGRAM, MAGIC, GIANT, and ICBP consortia. We did not observe any significant changes among these traits ($P>0.05$ for all; Figure 4; Table II in the Data Supplement). Next, we sought to determine whether the predicted effect of BAS using genetic data had a similar effect on plasma lipids levels as compared with the reported pharmacological effect. To do so, we adjusted the per-allele genetic effect to match the LDL-C reducing effect of 24 g/d cholestyramine, as reported in the LRCCPPT trial (the only BAS outcome trial available). We then predicted the effect of cholestyramine on TC using genetic data and compared it to the known effect of cholestyramine. The predicted reduction of TC was 25.8 mg/dL (95% CI −32.3, −19.4), which was not statistically different from the reported trial estimate ($P>0.05$).

We performed a similar analysis using the effect of colesevelam 3.75 g/d on LDL-C as the reference for the genetic effect (Figure 5). The predicted reduction of TC by colesevelam was estimated at 25.0 mg/dL (95% CI −33.0, −16.9), which was not different ($P>0.05$) from results of our meta-analysis. The predicted effect on HDL was null (0.42 mg/dL, 95% CI −0.78, 1.61) and was consistent with the reported effect of colesevelam ($P>0.05$). The predicted effect of colesevelam was associated with a modest decrease in triglycerides (8.94 mg/dL [95% CI: −15.5, −2.32] and was statistically different from the observed drug effect ($P=0.001$).

Predicted Effects of BAS on Cardiovascular Outcomes Using Genetic Data

Data from the CARDIoGRAMplusC4D Consortium was obtained to assess the association of rs4299376 with risk of CAD. The minor allele (LDL-C decreasing) of rs4299376 was associated with a modest yet significant decrease in risk of CAD (OR 0.95, 95% CI 0.93–0.97; $P=2.85\times10^{-7}$). We then derived the predicted effect of 24 g/d cholestyramine on risk of CAD based on the association of the $ABCG5/8$ rs4299376 polymorphism on CAD, adjusting the per-allele genetic effect to match the LDL-C reducing effect of 24 g/d cholestyramine. Cholestyramine 24 g/d was predicted to significantly reduce the risk of CAD (OR 0.63, 95% CI 0.52–0.77; $P=6.3\times10^{-6}$). The predicted estimate was not significantly different from the effect observed in the only outcome trial of cholestyramine, LRCCPPT ($P>0.05$; Figure 6). The effect of rs4299376 was also matched to the LDL-C reducing effect of 3.75 g/d colesevelam, leading to a predicted CAD reduction of OR=0.64 (95% CI 0.52–0.79; $P=4.3\times10^{-5}$) with colesevelam 3.75 g/d ($P>0.05$; Figure 6).

Predicted Effect of BAS on Cardiovascular Outcomes Based on CTT Data

As a sensitivity analysis, we used estimates from the CTT to determine whether the effect of BAS on reduction of CAD event was consistent with the one observed with statins by matching the LDL-C lowering effect from LRCCPPT to the reported effect from CTT, a large meta-analysis evaluating the effect of cholesterol reduction on CVD. The change in LDL-C levels from 24 g/d cholestyramine was predicted to significantly decrease the risk of major vascular events (OR 0.86, 95% CI 0.85–0.87; $P=6.6\times10^{-5}$; Figure 6). This estimate was not significantly different from observed effect of cholestyramine from clinical trial (LRCCPPT; $P>0.05$). Similarly, the effect of 3.75 g/d colesevelam was also predicted...
to significantly reduce the risk of cardiovascular events (OR 0.90, 95% CI 0.87–0.93; \(P=1.3\times10^{-13} \); \(P \) for difference >0.05).

Discussion

Mendelian Randomization analyses use the random allocation of alleles to replicate the randomization process in double-blinded clinical trials and to reduce the potential effects of reverse causation and confounding factors. The results of our Mendelian randomization analysis suggest that BAS may be effective in the prevention of CAD. Thus, when given in currently recommended doses, our data demonstrates that cholestyramine and colesevelam were associated with a reduced risk of CAD. Furthermore, our projections concerning the effect of BAS on clinical outcomes were consistent with estimates obtained from the cholestyramine LRCCPPT trial and the CTT.

The predicted effects of BAS on cardiovascular outcomes were based on robust genetic data, which was collectively derived from 194,427 participants from the CARDioGRAMplusC4D Consortium and 95,708 participants from the Global Lipids Genetics Consortia, respectively. Leveraging already available genetic data is highly cost-effective and has the added advantage of providing estimates that reflect lifelong difference in plasma LDL-C levels between carriers and noncarriers of the rs4299376 allele. In contrast, randomized trials are complex, expensive, and are generally restricted to several years of follow-up, which limits the ability to assess the long-term effects of BAS on clinical outcomes.

Our findings have important clinical implications. Although BAS monotherapy may not be as effective as statin therapy, our results suggest that BAS are likely to be an effective second-line therapy. In contrast, adequately powered randomized

Figure 3. Forest plot of the association of 3.75 g/d of colesevelam treatment and the mean difference of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDLC), total cholesterol, triglycerides, apolipoprotein (apo)A and apoB. Het \(P \) refers to the heterogeneity \(P \) value.
trials have failed to show a benefit of Niacin and CETP inhibitors.43–45 There has also been a shift in clinical guidelines, where patients are more likely to be prescribed with high dose statin therapy to reduce the risk of CAD irrespective of meeting specific LDL-C targets.2 However, statin therapy may not be well-tolerated or effective in all patients, and the addition of BAS in combination with statin therapy may further prevent the risk of CAD. Even though there is clinical evidence demonstrating that cholestyramine effectively reduces LDL-C levels, as well as suggestive evidence that it decreases the risk of CAD events, its use is hampered by poor patient tolerability and adverse side effects.7 Colesevelam is much better tolerated,46,47 has other potential benefits, such as reducing fasting blood glucose levels,48 and in our Mendelian randomization analysis produced a similar reduction in CAD to that of cholestyramine. Furthermore, our results were also supported by studies that assessed the effect of the cholesterol-lowering agent ezetimibe on CVD risk using both clinical and genetic data. For instance, the IMPROVE-IT trial demonstrated that the addition of ezetimibe to statin therapy resulted in an additional reduction in CVD risk as compared with statin therapy alone.49 Additionally, genetic studies have also showed that mutations known to inactivate NPC1L1 were associated with lower levels of plasma LDL-C and a reduced risk of CAD.50 Thus, our results suggest a beneficial effect of colesevelam on risk of CAD and highlight the need for well-designed RCTs.
to fully understand the clinical efficacy and safety of coles-velam as compared with a placebo, alone or in combination with other lipid lowering agents.

The ABCG5/8 genes and BAS act through related bio-
logical mechanisms. BAS bind to intestinal bile acids and are excreted through the feces, thus impeding the enterohepatic circulation of bile acid. This leads to an increase in bile acid synthesis and a subsequent decrease in plasma LDL-C lev-
els.51 Animal models have demonstrated that hepatic ABCG5/8 transporters are responsible for secreting multiple sterols in the bile, whereas intestinal transporters limit cholesterol absorption from the lumen and thus promote fecal excretion.52,53 Overexpression of ABCG5/8 genes in transgenic mice resulted in an increase in biliary cholesterol secretion, reduced choles-
terol absorption, and increased hepatic cholesterol synthesis,52 leading to a significant reduction in plasma cholesterol levels and atherosclerotic lesions. In addition, treatment with BAS has also been associated with reduced levels of fasting plasma glucose.54 Although the underlying mechanism is unknown, it has been suggested that the binding of BAS to bile acids alters the GI tract glucose absorption.54 In support of that hypothesis, studies have also indicated that gastric bypass surgery leads to an increase in glucose metabolism as a result of an increase in bile acid concentration.55 In our study, we did not observe an association of rs4299376 SNP with the changes in the lev-
els of fasting glucose or HbA1c and diabetes mellitus using data from the MAGIC and DIAGRAM Consortia (P>0.05 for all),38,39 suggesting that this could be a beneficial pleiotropic effect specific to the pharmacological agent. Genetic mutations of ABCG5/8 have also been associated with sitosterolemia, a rare genetic disorder resulting in increased intestinal absorp-
tion, decreased biliary excretion of dietary sterols, hypercho-
lesterolemia, and atherosclerosis. BAS treatment lowers blood levels of dietary sterols56,57 and is recommended for patients with sitosterolemia. Teusper et al (2010) reported that com-
mon ABCG5/8 polymorphisms lower phytosterol levels as well as CVD risk,58 again confirming the similarity between BAS treatment and the effect of rs4299376. Taken together, these results confirm the similarity between BAS treatment and the effect of rs4299376. Therefore, our genetic results illustrate that inhibition of intestinal cholesterol absorption may provide a valuable therapeutic target for the prevention of CVD.

A few limitations of our study warrant discussion. First, Mendelian randomization analyses require some assumptions to be met for the analysis to be valid, and these include the following: the genetic variant is associated with the exposure of interest, the genetic variant is independent of confounders, and the genetic variant is independent of the outcome given the exposure and confounding factors.12 Although the rs4299376 SNP acts through a similar functional pathway as BAS, we cannot exclude the possibility of pleiotropic effects of the genetic variant or off-target effects of the drug. For instance, both are involved in the absorption of dietary sterol, which may be a key mediator of their CAD protective effect. Second, we were unable to assess the effect of ethnicity on BAS efficacy because of the lack of reported data. Third, we found that the effect of coles-velam on triglycerides predicted by genetic data was statisti-
cally different from the pharmacological effect. Nonetheless, the predicted effect was weak (8.94 mg/dL [95% CI: 15.5, 2.32]) and should not affect CAD risk estimates because the effect size of triglycerides is modest in comparison with other CAD risk factors.59 Furthermore, our meta-analysis may have been underpowered to detect any change because triglyc-
iderides are highly clinically variable. However, the effects on TC and HDL-C predicted from genetic data were consistent with estimates from the meta-analysis. Fourth, the protective effect of BAS on CAD was larger in the Mendelian randomization analysis as compared with the reported trend from LRCCPPT and estimates derived from the CTT. Although the differences in estimates were not statistically different, this may be because of the observation that rs4299376 carriers have a lifelong expo-
sure to lower levels of LDL-C. Finally, the predicted side effects of BAS therapy using a Mendelian randomization analysis have not been addressed and further research may be required.

In summary, this systematic review, meta-analysis, and large-scale Mendelian randomization analysis illustrates that
pharmacological inhibition of intestinal cholesterol absorption may reduce the risk of major cardiovascular events. Comparisons of genetic association studies and clinical trials of colesevelam support the potential use of BAS as a second line therapy to reduce LDL-C in the prevention of CAD. Our results point to the need for large-scale randomized trials to fully assess the efficacy and safety of BAS treatment on CVD, as well as their effect when combined with other lipid lowering agents, such as statins.

Acknowledgments
We are thankful to all the participants having agreed to contribute to this project. Data on coronary artery disease have been contributed by CARDIoGRAMplusC4D investigators and have been downloaded from www.CARDIoGRAMPLUSC4D.org. Data on plasma lipid levels have been contributed by Global Lipids Genetic Consortium investigators and have been downloaded from http://www.sph.umich.edu/css/abcasis/public/lipids2010/.

Sources of Funding
G. Paré is receiving support from Canada Research Chair in Genetic and Molecular Epidemiology, CISCO Professorship in Integrated Health Systems, and grant support from Canadian Institutes of Health Research (MOP-106715).

Disclosures
None.

References

Statins are the primary therapeutic agents in the prevention of coronary artery disease (CAD), but may not be well tolerated or effective in all patients. Other lipid lowering agents, such as bile acid sequestrants (BAS), may be used as an alternative

toward reduced risk of clinical outcomes. We conducted a meta-analysis of cholestyramine, colestipol, and colesevelam or effective in all patients. Other lipid lowering agents, such as bile acid sequestrants (BAS), may be used as an alternative

toward reduced risk of clinical outcomes. We conducted a meta-analysis of cholestyramine, colestipol, and colesevelam

randomization in drug target validation and to complement clinical trial data. Effect of BAS on the Risk of CVD

Effect of BAS on the Risk of CVD
Effect of Bile Acid Sequestrants on the Risk of Cardiovascular Events: A Mendelian Randomization Analysis
Stephanie Ross, Matthew D'Mello, Sonia S. Anand, John Eikelboom, CARDIoGRAMplusC4D Consortium, Alexandre F.R. Stewart, Nilesh J. Samani, Robert Roberts and Guillaume Paré

Circ Cardiovasc Genet. 2015;8:618-627; originally published online June 4, 2015; doi: 10.1161/CIRCGENETICS.114.000952
Circulation: Cardiovascular Genetics is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1942-325X. Online ISSN: 1942-3268

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circgenetics.ahajournals.org/content/8/4/618

Data Supplement (unedited) at:
http://circgenetics.ahajournals.org/content/suppl/2015/06/04/CIRCGENETICS.114.000952.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Cardiovascular Genetics_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Cardiovascular Genetics_ is online at:
http://circgenetics.ahajournals.org/subscriptions/
SUPPLEMENTAL METHODS

Systematic Review and Meta-Analysis

Eligibility Criteria

Types of studies: Randomized, double-blinded, placebo controlled clinical trials (RCTs) that compared bile acid sequestrant (BAS) treatment with placebo. There were no restrictions based on publication status or publication date; however, only studies published in English were considered.

Type of patients: Only patients aged ≥ 18 years were considered for this review.

Type of Intervention: RCTs that compared the effects of BAS (i.e. 24 g daily cholestyramine, 5 g/d colestipol, and 3.75 g/d colesvelam) with placebo or no treatment. There were no restrictions based on the frequency, dosage, length or duration of the BAS intervention.

Types of Outcome Measures:

Primary outcome measures include:

1. Cardiovascular mortality;
2. Myocardial infarction (MI); and
3. Baseline and endpoint mean values or the absolute treatment difference in the intervention and placebo arms for the change in low density lipoprotein cholesterol (LDL-C) levels.

Studies with at least one of these primary outcomes were considered.
Secondary outcome measures include:

1. Baseline and endpoint mean values or the absolute treatment difference in the intervention and placebo arms for the change in high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), triglycerides, apolipoprotein A1 (apoA), and apolipoprotein B (apoB).

Information sources

A structured literature search was performed by identifying studies through electronic databases, hand searching reference lists, consulting with field experts and pharmaceutical companies, and scanning trial registries. This search was applied to PubMed (1946 to 2014 in Ovid).

Search

The following terms were used to search all clinical trial registries and databases: cholestyramine; colestipol; colesevelam HCl; placebo; and randomized controlled trials. Where possible, authors of relevant publications were contacted to provide additional information and details about outstanding issues.

Study Selection and Data Items

Based on the results of the search strategy, titles and abstracts for each reference were examined independently by two reviewers (MD and SR). Relevant studies obtained from the full-text screening phase were reviewed for methodological quality and disagreements were resolved through discussion or consultation with a clinician (GP). The following information was extracted from each included trial: (1) characteristics of the study participants (i.e. age, sex,
patient population); (2) characteristics of the study (i.e. study design, sample size, median follow-up period); (3) characteristics of the intervention (i.e. dose and frequency of the intervention); and (4) characteristics of the outcome measures (including cardiovascular mortality, MI, and mean change in LDL-C, HDL-C, TC, triglycerides, apoA and apoB).

Data collection process

The two reviewers independently extracted data from the included studies using data collection forms. When methodological information could not be obtained from a publication, the author was contacted for further comment. All forms used in this systematic review were subject to pilot-testing using ten randomly selected studies. Data entry was performed independently by one reviewer (SR) and cross-referenced by the other reviewer (MD). Any discrepancies between the two reviewers were documented and the forms were changed accordingly.

Summary measures

For continuous traits, studies that reported median values were converted to an equivalent mean value and the corresponding standard deviation values were calculated by dividing the interquartile range by 1.35. If studies did not report the standard deviation, it was calculated by multiplying the standard error by the square root of the sample size. The mean age across RCTs was reported as the sample size weighted mean. Where data for LDL-C, HDL-C and TC were available in units of mmol/L, they were converted to mg/dL using a multiplication factor of 38.66. Triglycerides, and apoA and apoB were similarly converted using a multiplication factor of 88.6 and 100, respectively. The mean change-from-baseline in plasma lipid levels in the BAS intervention group were compared to the mean differences in the placebo group with the 95%
confidence interval (CI) and p-value as a measure of uncertainty. For binary outcomes, the treatment effect was expressed as an odds ratio (OR) with the 95% CI and p-value. Meta-analyses were performed using an inverse variance random effect meta-analysis.

Synthesis of results
Heterogeneity was assessed using the chi-square statistic \((\chi^2) \) and inconsistency \((I^2) \) was measured by assessing the percentage of total variation of the effects of BAS across studies due to heterogeneity. A low p-value \((p<0.10) \) or \(I^2 \) test statistic of \(>30\% \) provided evidence of heterogeneity of intervention effects. If these estimates gave rise to sufficient evidence of heterogeneity than attempts were made to explain these differences.

Additional Analyses
To explain any evidence of heterogeneity, subgroup analyses were conducted based on the characteristics of the participants (i.e. presence of hyperlipidaemia or type 2 diabetes mellitus) and the study interventions (i.e. length of follow-up). Sensitivity analyses were pre-specified and were used to test the robustness of the pooled results. Unless otherwise specified, a correlation coefficient \((r) \) of 0.5 for the difference in the mean change from baseline was assumed for all analyses. Thus the \(r \) was varied by 0.3 and 0.7 for all the relevant studies to determine if this altered the reported estimates \(^1\).

Simulation Statistical Analysis
Simulations were performed to predict the effect of 24 g/d cholestyramine on plasma lipid profiles (HDL-C, TC, triglycerides, apoA and apoB) using the known genetic associations of
rs4299376 SNP with lipids fractions. To do so, we adapted the method from Sofat et al2 to match the genetic effects to the effect of cholestyramine 24 g/d on LDL-C, taking into account the uncertainty of both the genetic and drug effect estimates. Random numbers were selected from the normal distributions of the change in LDL-C for the pharmacological and genetic effect (i.e. fixing the mean and standard deviation of each distribution to their respective estimated values). In order to validate whether the rs4299376 SNP had a similar effect on plasma lipid profiles as cholestyramine, the predicted effects of cholestyramine on plasma levels of HDL-C, TC and triglycerides were estimated using genetic data. These predicted estimates were then compared to known effects of cholestyramine on the same lipids fractions from clinical data. 10,000 simulations were performed to generate the distribution of HDL-C, TC and triglycerides assuming each allele has the same predicted effect as cholestyramine on LDL-C, and the mean effect and 95\% CI were calculated. The p-value for the difference between the predicted effect of cholestyramine and the observed effects of BAS on lipid levels were calculated by comparing the randomly generated point estimate of the effect of cholestyramine to the randomly generated point estimate of the predicted effect of the drug. Next, the effect of 24 g/d cholestyramine on the risk of cardiovascular outcomes was predicted using data on genetic association of rs4299376 with CAD and compared to the effect of cholestyramine on CAD from the only outcome trial of cholestyramine, LRCCPPT3. The predicted drug effect was compared to the observed effect of a comparable dose of cholestyramine on the risk of CVD outcomes using a z-test. As a sensitivity analysis, the predicted effect of cholestyramine on CAD was also estimated using data from the CTT4. This estimate was similarly compared to the cardiovascular outcomes reported in the LRCCPPT in order to compare the predicted effect of BAS with statin use using a z-test. These analyses were also repeated using the summary effect of 3.75 g/d of colesevelam.
Results

Study Selection

A total of 19 studies were identified for inclusion in this review. The structured literature search of PubMed databases derived a total of 420 citations. Of these, 360 studies were discarded because after reviewing the abstracts it appeared that these papers clearly did not meet our inclusion criteria. The full-text of the remaining 60 citations were examined in more detail. It appeared that 40 articles did not meet the inclusion criteria. Of the included articles, there were six cholestyramine RCTs3-9, three colestipol RCTs10-12 and 10 colesevelam RCTs13-21 with a total of 7,021 study participants. Supplemental Figure1 illustrates the flow diagram of the study selection process.

Randomized Controlled Trials of Colestipol

We identified three RCTs with a total of 398 participants with hyperlipidemia (mean age 52 years, 44\% women)10-12 (Supplemental Table 1). Owing to the lack of reported data and differences in study dose, we did not pool the reported effect of colestipol on plasma lipid levels.

Additional Analyses

We were unable to conduct subgroup analyses in order to explore the presence of heterogeneity among the pooled estimates of 24 g/d cholestyramine and 3.75 g/d colesevelam on the mean change in plasma lipid levels due to a lack of reported data. Therefore, to account for the high degree of heterogeneity in the pooled estimates of cholestyramine, the effect estimates of the
mean change in LDL-C and TC from the LRCCPPT trial will be used as a surrogate since it was the only outcome trial.

To test the robustness of the main findings, the r of the mean change from baseline in the 24 g/d cholestyramine and the 3.75 g/d colesevelam meta-analyses were varied. Assuming an r of 0.3 and 0.7 did not demonstrate any difference in the reported treatment effects of cholestyramine (Supplemental Figure 3 and 4) or colesevelam (Supplemental Figure 5 and 6). However, assuming an $r=0.3$ within the cholestyramine meta-analysis resulted in a reduction of the high degree of heterogeneity in the pooled LDL-C estimates (P for heterogeneity $=1.70\times10^{-4}$) while an $r=0.7$ significantly increased the presence of heterogeneity (P-value: 2.10×10^{-9}). Similar results were also obtained for the treatment effects of colesevelam.
SUPPLEMENTAL TABLES

Supplemental Table #1: Studies contributing to the colestipol meta-analysis

<table>
<thead>
<tr>
<th>Author & Date</th>
<th>Patient Population</th>
<th>Sample size</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Follow-Up</th>
<th>Age (Mean, SD)</th>
<th>Women (%)</th>
<th>European (%)</th>
<th>LDL-C (mg/dL)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunninghake 1995</td>
<td>Hyperlipidemia</td>
<td>196</td>
<td>Colestipol (2 g; 4 g; 8 g; 16 g)</td>
<td>Placebo</td>
<td>8 weeks</td>
<td>56.2 (NR)</td>
<td>101 (52)</td>
<td>NR</td>
<td>190.0(NR)</td>
</tr>
<tr>
<td>Simons 1992</td>
<td>Hyperlipidemia</td>
<td>61</td>
<td>Colestipol (5 g); Colestipol (10 g) & each with 6 weeks of placebo; 6 weeks of simvasatin (20 mg); 6 weeks of simvastatin (40 mg)</td>
<td>Placebo with 6 weeks of placebo; 6 weeks of simvasatin (20 mg); 6 weeks of simvastatin (40 mg)</td>
<td>18 weeks</td>
<td>45.3 (19)</td>
<td>24 (39)</td>
<td>26 (43)</td>
<td>303.1(77.7)</td>
</tr>
<tr>
<td>Superko 1992</td>
<td>Hyperlipidemia</td>
<td>141</td>
<td>Colestipol (5g/d; 10g/d; 15g/d)</td>
<td>Placebo</td>
<td>12 weeks</td>
<td>49(12)</td>
<td>49 (35)</td>
<td>NR</td>
<td>168.0(12.0)</td>
</tr>
</tbody>
</table>

*Refers to the highest single BAS dose reported in the study; NR: not reported
Supplemental Table #2: The association of rs4299376 SNP (*ABCG5/8*) and the risk of LDL-C, HDL-C, TC, TG, diabetes, glycated hemoglobin (HbA1c), fasting glucose (FG), systolic blood pressure (SBP), diastolic blood pressure (DBP) and body mass index (BMI).

<table>
<thead>
<tr>
<th>Trait</th>
<th>Effect Allele</th>
<th>Other Allele</th>
<th>Effect Estimate</th>
<th>Standard Error</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-C</td>
<td>T</td>
<td>G</td>
<td>-2.75</td>
<td>0.19898</td>
<td>1.73E-47</td>
</tr>
<tr>
<td>HDL-C</td>
<td>T</td>
<td>G</td>
<td>0.05</td>
<td>0.07143</td>
<td>0.212</td>
</tr>
<tr>
<td>TC</td>
<td>T</td>
<td>G</td>
<td>-3.01</td>
<td>0.21939</td>
<td>4.00E-45</td>
</tr>
<tr>
<td>TG</td>
<td>T</td>
<td>G</td>
<td>-1.08</td>
<td>0.36735</td>
<td>0.003</td>
</tr>
<tr>
<td>FG</td>
<td>G</td>
<td>T</td>
<td>0.00088</td>
<td>0.0026</td>
<td>0.737689</td>
</tr>
<tr>
<td>HbA1c</td>
<td>T</td>
<td>G</td>
<td>-0.0051</td>
<td>0.004</td>
<td>0.199</td>
</tr>
<tr>
<td>Diabetes</td>
<td>G</td>
<td>T</td>
<td>-0.00738</td>
<td>0.016336</td>
<td>0.65164</td>
</tr>
<tr>
<td>SBP</td>
<td>G</td>
<td>T</td>
<td>0.024683</td>
<td>0.112445</td>
<td>0.826253</td>
</tr>
<tr>
<td>DBP</td>
<td>G</td>
<td>T</td>
<td>0.00435</td>
<td>0.070956</td>
<td>0.951115</td>
</tr>
<tr>
<td>BMI</td>
<td>T</td>
<td>G</td>
<td>-0.0054</td>
<td>0.0064</td>
<td>0.4</td>
</tr>
</tbody>
</table>
SUPPLEMENTAL FIGURES

Supplemental Figure #1: Regional LD Plot of rs4299376 (ABCG5/ABCG8). Adapted from SNAP (Broad Institute) with data from the 1000 Genomes Pilot 1.
Supplemental Figure #2: Forest plot of the association of 24 g/d of cholestyramine treatment and the summary mean difference of LDL-C, HDL-C, total cholesterol, triglycerides, apoA and apoB assuming a correlation coefficient 0.3.

Het P refers to the heterogeneity p-value.

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Mean Change (95% CI)</th>
<th>P</th>
<th>Het P</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiklund 1990</td>
<td>80</td>
<td>-93.2(-150.2,-36.2)</td>
<td>0.007</td>
<td>1.70E-04</td>
</tr>
<tr>
<td>NHBLI 1984</td>
<td>116</td>
<td>-52.5(-84.3,-20.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRCCPPT 1984</td>
<td>3806</td>
<td>-23.5(-26.8,-20.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4002</td>
<td>-52.2(-90.0,-14.3)</td>
<td>0.007</td>
<td>1.70E-04</td>
</tr>
<tr>
<td>HDL-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiklund 1990</td>
<td>80</td>
<td>1.9(-16.6,20.5)</td>
<td>0.252</td>
<td>0.91</td>
</tr>
<tr>
<td>NHBLI 1984</td>
<td>116</td>
<td>2.7(-4.0,9.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>196</td>
<td>2.6(-1.9,7.1)</td>
<td>0.252</td>
<td>0.91</td>
</tr>
<tr>
<td>Total Cholesterol</td>
<td></td>
<td></td>
<td>0.011</td>
<td>2.40E-04</td>
</tr>
<tr>
<td>Wiklund 1990</td>
<td>80</td>
<td>-92.4(-148.9,-35.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHBLI 1984</td>
<td>116</td>
<td>-47.0(-79.2,-14.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRCCPPT 1984</td>
<td>3806</td>
<td>-21.4(-24.8,-18.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4002</td>
<td>-49.5(-88.1,-10.9)</td>
<td>0.011</td>
<td>2.40E-04</td>
</tr>
<tr>
<td>Triglycerides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiklund 1990</td>
<td>80</td>
<td>-1.8(-52.1,48.5)</td>
<td>0.777</td>
<td>0.73</td>
</tr>
<tr>
<td>NHBLI 1984</td>
<td>116</td>
<td>6.1(-32.1,44.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>196</td>
<td>3.1(-18.7,24.9)</td>
<td>0.777</td>
<td>0.73</td>
</tr>
<tr>
<td>apoA</td>
<td></td>
<td></td>
<td>0.23</td>
<td>1</td>
</tr>
<tr>
<td>Wiklund 1990</td>
<td>80</td>
<td>10.0(-6.3,26.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>apoB</td>
<td></td>
<td></td>
<td>3.72E-05</td>
<td>1</td>
</tr>
<tr>
<td>Wiklund 1990</td>
<td>80</td>
<td>-44.0(-64.9,-23.1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Figure #3: Forest plot of the association of 24 g/d of cholestyramine treatment and the summary mean difference of LDL-C, HDL-C, total cholesterol, triglycerides, apoA and apoB assuming a correlation coefficient 0.7.

Het P refers to the heterogeneity p-value.
Supplemental Figure #4: Forest plot of the association of 3.75 g/d of colesevelam treatment and the summary mean difference of LDL-C, HDL-C, total cholesterol, triglycerides, apoA and apoB assuming a correlation coefficient 0.3.

Het P refers to the heterogeneity p-value.
Supplemental Figure #5: Forest plot of the association of 3.75 g/d of colesevelam treatment and the summary mean difference of LDL-C, HDL-C, total cholesterol, triglycerides, apoA and apoB assuming a correlation coefficient 0.7.

Het P refers to the heterogeneity p-value.
Supplemental Figure #6: Study flow diagram.

- Records identified through database searching (n = 420)
- Additional records identified through other sources (n = 0)
- Records after duplicates removed (n = 0)
- Records screened (n = 420)
 - Full-text articles assessed for eligibility (n = 60)
 - Studies included in qualitative synthesis (n = 19)
 - Studies included in quantitative synthesis (meta-analysis) (n = 10)
 - Records excluded (n = 360)
 - Duplicate publications
 - Trial design
 - Study intervention
 - Patient population
 - Outcome not measured
 - Full-text articles excluded (n = 41)
 - Duplicate publications: 6
 - Trial design: 27
 - Study intervention: 8
List of CARDioGRAMplusC4D authors

1Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK. 2Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany. 3Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. 4Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK. 5Department of Medicine, Stanford University School of Medicine, Stanford, California, USA. 6Department of Health Sciences, University of Leicester, Leicester, UK. 7Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 8Center for Non-Communicable Diseases, Karachi, Pakistan. 9Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. 10Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 11Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Lübeck, Germany. 12Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden. 13Division of Cardiovascular and Neuronal Remodelling, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK. 14Center for Genome Science, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Yeonje-ri, Chongwon-gun, Chungcheongbuk-do, Korea. 15Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA. 16Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA. 17Department of Epidemiology and Biostatistics, Imperial College London, London, UK. 18Estonian Genome Center, University of Tartu, Tartu, Estonia. 19Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. 20Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. 21Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden. 22Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK. 23Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland. 24Clinical Trial Service Unit, University of Oxford, Oxford, UK. 25Epidemiological Studies Unit, University of Oxford, Oxford, UK. 26Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany. 27Ludwigshafener Risk and Cardiovascular Health (LURIC) Study, Freiburg, Germany. 28Department of Medical Sciences, Uppsala University, Uppsala, Sweden. 29Department of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland. 30Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere, Finland. 31Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK. 32Genetic & Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Skåne University Hospital, Malmö, Sweden. 33Department of Public Health & Clinical Medicine, Genetic Epidemiology & Clinical Research Group, Section for Medicine, Umeå University, Umeå, Sweden. 34Department of Odontology, Umeå University, Umeå, Sweden. 35deCODE Genetics, Reykjavik, Iceland. 36Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland. 37Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland. 38Medical Research Institute, University of Dundee, Ninewells
Hospital and Medical School, Dundee, UK. 39Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 40HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA. 41Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. 42Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. 43Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA. 44Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. 45Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK. 46University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK. 47National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK. 48Deutsches Herzzenrum München, Technische Universität München, Munich, Germany. 49Practice of Gynecology, Ulm University Medical Centre, Ulm, Germany. 50Biotherapeutics and Bioinnovation Center, Pfizer, South San Francisco, California, USA. 51Department of Dietetics– Nutrition, Harokopio University, Athens, Greece. 52A list of members and affiliations appears in the Supplementary Note. 53Klinik für Innere Medizin, Kreiskrankenhaus Rendsburg, Rendsburg, Germany. 54Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. 55Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. 56Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, University Hospital Malmö, Malmö, Sweden. 57CEA–Genomics Institute, National Genotyping Centre, Paris, France. Commissariat à l’énergie atomique et aux energies alternatives] 58Department of Public Health & Clinical Medicine, Section for Nutritional Research, Umeå University, Umeå, Sweden. 59Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA. 60Hannover Unified Biobank, Hannover Medical School, Hannover, Germany. 61First Cardiology Department, Onassis Cardiac Surgery Center 356, Athens, Greece. 62Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland. 63Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK. 64Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland. 65Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK. 66Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, Oxford, UK. 67Institute of Epidemiology II, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany. 68Institut National de la Santé et la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) S937, Institute for Cardiometabolism and Nutrition (ICAN), Pierre and Marie Curie (Paris 6) University, Paris, France. 69Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany. 70Chair of Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany. 71Chair of Genetic Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany. 72Institute of Genetic Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany.
<table>
<thead>
<tr>
<th>Institution and Department</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Centre, Department of Cardiology, Tampere University Hospital</td>
<td>Tampere, Finland</td>
</tr>
<tr>
<td>Division of Endocrinology and Diabetes, Department of Internal Medicine, Ulm University</td>
<td>Ulm, Germany</td>
</tr>
<tr>
<td>Medical Centre</td>
<td></td>
</tr>
<tr>
<td>Institut für Klinische Molekularbiologie, Christian-Albrechts Universität, Kiel, Germany</td>
<td></td>
</tr>
<tr>
<td>Division of Epidemiology, Multidisciplinary Cardiovascular Research Centre (MCRC)</td>
<td>University of Leeds, Leeds, UK</td>
</tr>
<tr>
<td>Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK</td>
<td></td>
</tr>
<tr>
<td>University of Ottawa Heart Institute, Cardiovascular Research Methods Centre Ontario,</td>
<td>Ottawa, Ontario, Canada</td>
</tr>
<tr>
<td>Ottawa, Ontario, Canada</td>
<td></td>
</tr>
<tr>
<td>Ruddy Canadian Cardiovascular Genetics Centre, Ottawa, Ontario, Canada</td>
<td></td>
</tr>
<tr>
<td>National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital,</td>
<td>London, UK</td>
</tr>
<tr>
<td>Reykjavik, Iceland</td>
<td></td>
</tr>
<tr>
<td>Faculty of Medicine, University of Iceland, Reykjavik, Iceland</td>
<td></td>
</tr>
<tr>
<td>Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland</td>
<td></td>
</tr>
<tr>
<td>Department of Experimental Immunohematology, Sanquin, Amsterdam, The Netherlands</td>
<td></td>
</tr>
<tr>
<td>Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg</td>
<td>Mainz, Germany</td>
</tr>
<tr>
<td>University Mainz, Mainz, Germany</td>
<td></td>
</tr>
<tr>
<td>Department of Medicine 2, University Medical Center Mainz, Johannes Gutenberg University</td>
<td>Mainz, Germany</td>
</tr>
<tr>
<td>Mainz, Mainz, Germany</td>
<td></td>
</tr>
<tr>
<td>Institut Pasteur de Lille, INSERM U744, Université Lille Nord de France, Lille, France</td>
<td></td>
</tr>
<tr>
<td>Department of Epidemiology and Public Health, EA3430, University of Strasbourg,</td>
<td>Strasbourg, France</td>
</tr>
<tr>
<td>Rotterdam, The Netherlands</td>
<td></td>
</tr>
<tr>
<td>Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands</td>
<td></td>
</tr>
<tr>
<td>Human Genetics Center, University of Texas Health Science Center,</td>
<td>Houston, Texas, USA</td>
</tr>
<tr>
<td>Department of Experimental Medicine, University of Milano– Bicocca, Monza, Italy</td>
<td></td>
</tr>
<tr>
<td>Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA</td>
<td></td>
</tr>
<tr>
<td>National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA</td>
<td></td>
</tr>
<tr>
<td>Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands</td>
<td></td>
</tr>
<tr>
<td>Clinic for General and Interventional Cardiology, University Heart Center Hamburg,</td>
<td>Hamburg, Germany</td>
</tr>
<tr>
<td>Cardiovascular Research Institute, Washington Hospital Center, Washington, DC, USA</td>
<td></td>
</tr>
<tr>
<td>Centre for Public Health, The Queen’s University of Belfast, Belfast, UK</td>
<td></td>
</tr>
<tr>
<td>Research Centre for Epidemiology and Preventive Medicine (EPIMED), Clinico-Epidemiologic</td>
<td>University of Insubria, Varese, Italy</td>
</tr>
<tr>
<td>Department of Cardiology, Toulouse University School of Medicine, Rangueil Hospital,</td>
<td></td>
</tr>
<tr>
<td>Toulouse, France</td>
<td></td>
</tr>
<tr>
<td>INSERM UMR S872, Cordeliers Research Centre, Paris, France</td>
<td></td>
</tr>
<tr>
<td>Division of Research, Kaiser Permanente Northern California, Oakland, California, USA</td>
<td></td>
</tr>
<tr>
<td>Icelandic Heart Association, Kopavogur, Iceland</td>
<td></td>
</tr>
<tr>
<td>Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA</td>
<td></td>
</tr>
<tr>
<td>Cardiology Division, Department of Internal Medicine, Cardiovascular Genome Center,</td>
<td></td>
</tr>
<tr>
<td>Yonsei University, Seoul, Korea</td>
<td></td>
</tr>
<tr>
<td>Department of Clinical Physiology, Tampere University Hospital and University of Tampere,</td>
<td>Tampere, Finland</td>
</tr>
<tr>
<td>Tampere, Finland</td>
<td></td>
</tr>
<tr>
<td>UK Clinical Research Collaboration (UKCRC) Centre of Excellence for Public Health</td>
<td>Queen’s University of Belfast, Belfast, UK</td>
</tr>
<tr>
<td>(Northern Ireland), Queen’s University of Belfast, Belfast, UK</td>
<td></td>
</tr>
<tr>
<td>Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital,</td>
<td>Seoul, Korea</td>
</tr>
<tr>
<td>Seoul, Korea</td>
<td></td>
</tr>
<tr>
<td>Department of Internal Medicine II–Cardiology, Ulm University Medical Center, Ulm, Germany</td>
<td>Ulm, Germany</td>
</tr>
<tr>
<td>Science Center, Tampere University Hospital, Tampere, Finland</td>
<td></td>
</tr>
<tr>
<td>Department of Haematology, University of Cambridge, Cambridge, UK</td>
<td></td>
</tr>
<tr>
<td>National Health Service (NHS) Blood and Transplant, Cambridge, UK</td>
<td></td>
</tr>
<tr>
<td>Division of Cardiology, Samsung Medical Center, Seoul, Korea</td>
<td></td>
</tr>
<tr>
<td>Munich</td>
<td></td>
</tr>
</tbody>
</table>
Heart Alliance, Munich, Germany. Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA. Center for Human Genetics, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA. Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA. Division of Cardiology, Department of Medicine, Helsinki University Central Hospital (HUCH), Helsinki, Finland. Klinik und Poliklinik für Innere Medizin II, Regensburg, Germany. Department of Human Genetics, McGill University, Montréal, Québec, Canada. Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA. Lebanese American University, Chouran, Beirut, Lebanon. Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. Synlab Academy, Mannheim, Germany. Cardiology Division, Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. These authors contributed equally to this work.
SUPPLEMENTAL REFERENCES

