HFE C282Y homozygosity is associated with lower total and LDL cholesterol: the Hemochromatosis and Iron Overload Screening (HEIRS) Study

Paul C Adams, MD¹, Jim S Pankow, PhD, MPH², James C Barton, MD³, Ron T Acton, PhD⁴, Cathie Leiendecker-Foster, MS², Gordon D McLaren, MD⁵, Mark Speechley, PhD⁶, John H Eckfeldt, MD, PhD⁷.

¹ Department of Medicine, University Hospital, London, Ontario, Canada
² Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
³ Southern Iron Disorders Center, Birmingham,
⁴ Division of Microbiology, University of Alabama, Birmingham, AL
⁵ Veterans Affairs Long Beach Healthcare System, Long Beach, CA and Division of Hematology/Oncology, University of California, Irvine, CA
⁶ Division of Epidemiology and Biostatistics, University of Western Ontario, London, Ontario, Canada
⁷ Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN

Correspondence:

Dr. Paul C. Adams,
Department of Medicine,
University Hospital,
339 Windermere Rd,
London, Ontario
Canada N6A 2E8

Ph 519 685 8500 ext 35375
Fax 519 663 3549
Email padams@uwo.ca
Abstract

Background: Previous studies have suggested a positive association of coronary heart disease (CHD) risk and both serum ferritin concentrations and C282Y heterozygosity. Relationships between serum lipids, C282Y homozygosity and serum ferritin have not been well established.

Methods and Results: The HEIRS Study screened 101,168 participants in primary care from 5 field centers in the US and Canada with serum ferritin, transferrin saturation (TS), and HFE genotyping for C282Y and H63D mutations. Serum lipids were measured in a subset of 176 C282Y homozygotes (63 male, 113 female Caucasians) without a prior diagnosis of, family history or treatment for hemochromatosis and a matched sample of participants with normal transferrin saturation and serum ferritin without C282Y or H63D mutations (wild type, 123 male, 189 female Caucasians). The proportion of subjects who reported using prescription cholesterol-lowering medications was approximately three times higher in HFE wild-type subjects than C282Y homozygotes among men (22% vs. 7%; p=0.003) and, in women, two times higher (16% vs. 8%; p=0.05). After excluding subjects taking cholesterol medications, C282Y homozygotes had significantly lower mean total and LDL-cholesterol concentrations than wild-type subjects, with larger genotypic differences for LDL in men (-0.62 mmol/L, 95 % CI -0.93 to -0.33) than in women (-0.28 mmol/L, 95 % CI -0.52 to -0.08).

Conclusions: Total mean serum cholesterol and LDL levels were lower in C282Y homozygotes than in HFE wild type participants. Further studies are required to
determine if this is related to iron overload, to \textit{HFE} alleles, or other factors on C282Y-positive chromosome 6p haplotypes.

\textbf{Keywords:} hemochromatosis, haemochromatosis, iron overload, iron
Introduction

Hemochromatosis associated with homozygosity for the C282Y mutation of the HFE gene is the most common genetic disorder in the Caucasian populations with a prevalence of approximately 1 in 200 to 300 in Caucasian persons of northern European descent [1]. It has been suggested that there may be a biological advantage to persons carrying mutations of the HFE gene [2]. Population studies of elderly subjects have demonstrated no difference in the frequency of HFE mutations compared younger subjects, suggesting minimal effects of these mutations on longevity [3;4]. There have been conflicting reports of the association of iron, serum ferritin and HFE mutations with coronary heart disease [5-13]. Most studies have reported on associations with C282Y heterozygotes, a group which is very unlikely to have significant iron overload [1]. A previous carefully designed population-based study reported lower total cholesterol and LDL cholesterol in 48 C282Y homozygotes compared to HFE wild type subjects [14]. In the current study, the relationship between serum lipids, serum ferritin, and transferrin saturation in C282Y homozygotes is reported in a subset of participants from the Hemochromatosis and Iron Overload Screening (HEIRS) Study [1].

Methods

The authors had full access to and take full responsibility for the integrity of the data. All authors have read and agree to the manuscript as written. The multi-center, multi-ethnic, primary care-based HEIRS Study performed initial screening after informed consent.
consent on 101,168 participants for hemochromatosis and iron overload using transferrin saturation (TS) and serum ferritin (SF) measurements and HFE genotyping (C282Y and H63D alleles)[1].

All C282Y homozygotes identified in the HEIRS Study were invited to participate in a post-screening clinical examination that included collection of blood samples for additional testing. In addition, a frequency-matched comparison group was invited to attend the clinical examination from initial screening participants who had 1) HFE genotype wt/wt (wild type); and 2) both TS and SF in the eligible range. Eligible ranges for men were TS 20–34% and SF 87-247 µg/L. Eligible ranges for women were TS 16-28% and SF 19-121 µg/L. Variables used for the frequency matching were: Field Center (University of Alabama at Birmingham, University of California at Irvine, Howard University, Kaiser Permanente-Portland and Hawaii, London Health Sciences Centre), age group (24-44, 45-64, and 65+ years), and date of initial screening visit. Almost all C282Y homozygotes in the HEIRS Study were Caucasian. Therefore, we restricted the present analysis to subjects who reported that they were “White or Caucasian”. Medical history including medications was recorded by the examining physician or nurse practitioner.

Total serum cholesterol was measured in serum using the Roche cholesterol oxidase method with the Roche Modular P Chemistry analyzer (Roche Diagnostics Corporation, Indianapolis, IN 46250). High density lipoprotein (HDL)-cholesterol was measured in serum using the HDL-C plus 3rd generation direct method and the triglycerides with the Triglyceride GB reagent using the same analyzer. Low density lipoprotein (LDL)-
cholesterol was calculated in serum specimens having a triglyceride value < 4.52 mmol/L using the formula of Friedewald [15]. A total of 51 subjects fasting for less than 12 hours or missing information on fasting status were excluded from analyses of triglycerides and LDL cholesterol. Hypercholesterolemia was defined as total cholesterol of 6.2 mmol/L or greater or current use of cholesterol lowering medications. Measurement of serum ferritin and transferrin saturation has been previously described (1).

For continuous variables such as transferrin saturation, pairwise differences in characteristics between C282Y homozygotes and the comparison group of wild-type subjects were tested by linear regression. For dichotomous variables such as history of liver disease or hypercholesterolemia, prevalence ratios (PRs) and 95% confidence intervals (CIs) were estimated using relative risk regression (binomial regression with a log link). Tests for interaction were obtained by fitting a model that combined men and women and including an interaction term (sex*genotype). All analyses were implemented in SAS (version 9.1, SAS Institute Inc., Cary, NC).

Results
Age and Field Center adjusted means or percentages of iron, liver, and lipid measures by HFE genotype are shown in Table 1. The age range in the HEIRS study was 25 – 100 years with a median age of 51 years. The use of prescription cholesterol-lowering medications was 22 % in HFE wild type men and 16 % in HFE wild type women. In C282Y homozygotes, these medications were used significantly less often in men (7%,
p=0.003) and women (8%, p=.05) than in control subjects. After excluding subjects taking cholesterol medications, C282Y homozygotes had significantly lower mean total and LDL-cholesterol concentrations than wild-type subjects, with larger genotypic differences for LDL in men (-0.62 mmol/L, 95 % CI -0.93 to -0.33) than in women (-0.28 mmol/L, 95 % CI -0.91 to -0.52). There was a significant inverse relationship between LDL and serum ferritin, r = -0.12, p =0.02 and transferrin saturation, r = -0.25, p < 0.001. Among C282Y homozygotes, the correlation between TS and LDL is -0.16 (p=0.06; n=137). Among wild-type subjects, the correlation between TS and LDL is 0.01 (p=0.90; n=219). Indirect measures of iron status (serum ferritin and transferrin saturation) were markedly higher in both male and female C282Y homozygotes, and there was a statistically significant interaction between ferritin and HFE mutation by gender, p < 0.001 (Table 1). Because of this strong association, it was difficult to separate the potential contributions of HFE genotype and iron measures to LDL cholesterol levels. LDL cholesterol levels of C282Y homozygotes and wild-type subjects were compared according to transferrin saturation (Figure 1). In men, age and center-adjusted prevalence of hypercholesterolemia was significantly lower in C282Y homozygotes than in wild type participants (Table 2). This association remained after additional adjustment for history of liver disease, or aspartate aminotransferase (AST), alanine aminotransferase (ALT) and gamma glutamyl transferase (GGT), but was substantially attenuated when adjusted for transferrin saturation and serum ferritin (Table 2). In women, the association between hypercholesterolemia and HFE genotype was not statistically significant in any of the regression models (Table 2). We have done age stratification (< 55 and 55+) and found the LDL effect was larger in younger
subjects (17 mg/dL) than in older subjects (8 mg/dL). A formal test of genotype*age interaction was not significant.

Discussion

Coronary heart disease has not been reported commonly in long-term studies of C282Y homozygotes [16;17] despite its being the most common cause of death in most Western countries. In this study, we have determined that C282Y homozygotes have a significantly lower total and LDL cholesterol. The direction and magnitude of the effect are very similar to those in a previous report in a study of 48 C282Y homozygotes in the Atherosclerosis and Risk in Communities Study (ARIC)[14].

A key question is whether the magnitude of the difference in total or LDL cholesterol reported in this study is clinically significant. A meta-analysis of clinical trials predicted that every 10 percentage points of cholesterol lowering reduces CHD mortality by 15% and total mortality by 11% [18]. In HEIRS, male and female C282Y homozygotes had total cholesterol levels that were 12 and 4 percentage points lower, respectively, than their wild-type counterparts. Several large population based studies have not demonstrated any differences in CHD morbidity or mortality events across all HFE genotypes [12;14] but it is unlikely that these studies were large enough to detect modest reductions in risk for C282Y homozygotes.
Differences in serum cholesterol concentrations could result from long-term liver damage due to iron overload in C282Y homozygotes. It seems unlikely to be related to liver disease with decreased cholesterol synthesis since most participants had relatively mild iron overload. Liver biopsies were infrequently performed in the HEIRS Study and cirrhosis was a rare observation [19]. Among patients with chronic hepatitis C, total cholesterol levels were 0.31-0.41 mmol/L (12-16 mg/dL) lower among those with significant liver fibrosis than in those with no significant fibrosis [20;21].

It is important to establish whether the observations in this study regarding the relationship of serum iron measure and cholesterol and LDL-cholesterol values apply to patients without HFE mutations. The magnitude of the differences in cholesterol would have public health significance if they could be extrapolated to the general population. The effects of oral iron supplements on serum lipids have not been clearly established, and many multivitamin preparations which claim to lower cholesterol contain iron. Experimental iron overload in rats has been found to lower LDL and raise HDL [22]. Excess iron could affect cholesterol metabolism due to increased intracellular oxidative stress, membrane peroxidation, and altered activity of liver enzymes involved in cholesterol metabolism and lipoprotein formation [22]. Hemochromatosis patients typically have low levels of hepcidin which increases ferroportin expression on macrophages which decreases intracellular iron. Foam cells in the arterial wall are deteriorated macrophages and may have decreased iron and less oxidative damage [23].
It is important to recognize that elevated serum ferritin may be associated with coronary heart disease because serum ferritin may be a marker of obesity, the metabolic syndrome, diabetes and inflammation. In this study, the selection of controls with a normal serum ferritin reduced the chance of including wild-type participants with metabolic syndrome and therefore the differences observed here may be more marked than in the general population.

An unresolved question arising from these studies is whether the decreased cholesterol in C282Y homozygotes is related to excess iron, or a genetic effect of the \textit{HFE} gene itself or other genes in close proximity such as those in the HLA region which are in linkage disequilibrium with the \textit{HFE} locus [24]. The HEIRS Study design resulted in a subset of C282Y homozygotes with a broad range of serum ferritin levels and included non-expressing patients with a normal serum ferritin. Further studies should include the study of serum lipids in C282Y homozygotes before and after phlebotomy therapy. In conclusion, we have confirmed the previous observation, that C282Y homozygotes have a lower total and LDL cholesterol than matched controls without \textit{HFE} mutations. This may be a factor in the reportedly normal life expectancy that has been reported in patients in population studies and an elucidation of the underlying basis for these observations could be relevant to population health.
Acknowledgments

The authors acknowledge the assistance of all the HEIRS Study investigators and its participants in making this study possible.

Funding Sources

The HEIRS Study was initiated and funded by the National Heart, Lung, and Blood Institute, in conjunction with the National Human Genome Research Institute. The study is supported by contracts N01-HC05185 (University of Minnesota); N01-HC05186, N01-CM-07003-74, and Minority Community Clinical Oncology Program (Howard University); N01-HC05188 (University of Alabama at Birmingham); N01-C05189 (Kaiser Permanente Center for Health Research); N01-HC05190 (University of California, Irvine); N01-HC05191 (London Health Sciences Centre); and N01-C05192 (Wake Forest University). Additional support was provided by the University of Alabama at Birmingham General Clinical Research Center grant M01-RR00032, Howard University General Clinical Research grant M01-RR10284, and the University of California, Irvine University of California at San Diego/University of California at Irvine Satellite General Clinical Research Center grant M01-RR00827, sponsored by the National Center for Research Resources, National Institutes of Health; Howard University Research Scientist Award UH1-HL03679-05 from the National Heart, Lung and Blood Institute and the Office of Research on Minority Health (VRG); and Southern Iron Disorders Center (JCB, RTA).
Conflict of Interest Disclosures

The authors of this manuscript have no conflicts of interest to disclose.
Reference List

Legend to Figure

Figure 1. LDL cholesterol in C282Y homozygotes (■) compared to control participants (●) categorized by serum transferrin saturation. Data is expressed as mean with 95% confidence intervals.
Table 1. Adjusted* Means or Percentages of Iron, Liver, and Lipid Measures by HFE Genotype

<table>
<thead>
<tr>
<th>Measure</th>
<th>Men</th>
<th>Women</th>
<th>P<sub>men</sub></th>
<th>P<sub>women</sub></th>
<th>P<sub>interaction</sub><sup>**</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transferrin saturation (%)</td>
<td>73 (36, 46)</td>
<td>64 (34, 42)</td>
<td><0.001</td>
<td><0.001</td>
<td>0.11</td>
</tr>
<tr>
<td>Ferritin (µg/L)</td>
<td>1036 (730, 1072)</td>
<td>380 (235, 392)</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>36 (3, 16)</td>
<td>20 (-7, 2)</td>
<td><0.001</td>
<td>0.24</td>
<td><0.001</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>39 (0, 9)</td>
<td>22 (-8, 2)</td>
<td>0.02</td>
<td>0.33</td>
<td>0.07</td>
</tr>
<tr>
<td>GGT (U/L)</td>
<td>37 (2, 14)</td>
<td>24 (-6, 9)</td>
<td>0.54</td>
<td>0.45</td>
<td>0.99</td>
</tr>
<tr>
<td>History of liver disease (%)</td>
<td>15 (1.1, 7.3)</td>
<td>8 (0.49, 2.7)</td>
<td>0.03</td>
<td>0.75</td>
<td>0.32</td>
</tr>
<tr>
<td>Lipid-lowering medication (%)</td>
<td>7 (0.49, 1.1)</td>
<td>8 (0.25, 1.1)</td>
<td>0.02</td>
<td>0.07</td>
<td>0.57</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)<sup>***</sup></td>
<td>4.91 (1.1, 7.3)</td>
<td>5.28 (-0.49, 0)</td>
<td><0.001</td>
<td>0.05</td>
<td>0.27</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/L)<sup>***</sup></td>
<td>2.79 (0.49, 1.1)</td>
<td>3.00 (-0.49, 0)</td>
<td><0.001</td>
<td>0.01</td>
<td>0.26</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/L)<sup>***</sup></td>
<td>1.22 (0.49, 1.1)</td>
<td>1.48 (-0.49, 0)</td>
<td>0.93</td>
<td>0.39</td>
<td>0.61</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)<sup>***</sup></td>
<td>2.15 (0.49, 1.1)</td>
<td>1.75 (-0.49, 0)</td>
<td>0.84</td>
<td>0.70</td>
<td>0.75</td>
</tr>
</tbody>
</table>

* adjusted for age and field center
** test of homogeneity across genders in difference in mean or prevalence ratio
*** excluding subjects taking lipid-lowering medications

1 mmol/L of total, LDL and HDL cholesterol = 38.67 mg/dL
Table 2. Association of HFE Genotype and Hypercholesterolemia

<table>
<thead>
<tr>
<th>Model</th>
<th>Covariates</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Age and center</td>
<td>0.39</td>
<td>0.76</td>
</tr>
<tr>
<td>2</td>
<td>Model 1 variables + history of liver disease</td>
<td>0.38</td>
<td>0.79</td>
</tr>
<tr>
<td>3</td>
<td>Model 1 variables + ALT, AST, and GGT</td>
<td>0.43</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>Model 1 variables + serum ferritin and transferrin saturation</td>
<td>0.81</td>
<td>0.79</td>
</tr>
</tbody>
</table>

*prevalence of hypercholesterolemia in C282Y homozygotes vs. wild-type homozygotes
HFE C282Y Homozygosity Is Associated With Lower Total and LDL Cholesterol: The Hemochromatosis and Iron Overload Screening (HEIRS) Study
Paul C. Adams, Jim S. Pankow, James C. Barton, Ron T. Acton, Cathie Leendecker- Foster, Gordon D. McLaren, Mark Speechley and John H. Eckfeldt

Circ Cardiovasc Genet. published online January 23, 2009;
Circulation: Cardiovascular Genetics is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 1942-325X. Online ISSN: 1942-3268

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circgenetics.ahajournals.org/content/early/2009/01/23/CIRCGENETICS.108.813089

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Genetics can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Genetics is online at:
http://circgenetics.ahajournals.org//subscriptions/