Exome Sequencing and Genome-Wide Linkage Analysis in 17 Families Illustrates the Complex Contribution of TTN Truncating Variants to Dilated Cardiomyopathy

Running title: Norton et al.; Exome Sequence Analysis in TTN DCM

Nadine Norton, PhD\(^1\); Duanxiang Li, MD, MS\(^1\); Evadnie Rampersaud, PhD\(^2\); Ana Morales, MS, CGC\(^1\); Eden R. Martin, PhD\(^2\); Stephan Zuchner, MD\(^2\); Shengru Guo, MS\(^3\); Michael Gonzalez, BSc\(^2\); Dale J. Hedges, PhD\(^2\); Peggy D. Robertson, PhD\(^3\); Niklas Krumm, BA\(^3\); Deborah A. Nickerson, PhD\(^3\); Ray E. Hershberger, MD\(^1\) on behalf of the National Heart Lung and Blood Institute GO Exome Sequencing Project & the Exome Sequencing Project Family Studies Project Team

1Cardiovascular Division, Dept of Medicine, 2Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL; 3Dept of Genome Sciences, University of Washington, Seattle, WA

Address for correspondence:
Ray E. Hershberger, MD
Dorothy M Davis Heart & Lung Research Institute,
Room 304 DHLRI
473 West 12th Avenue
Columbus, Ohio 43210
Tel: 614-688-1305
Fax: 614-688-1381
E-mail: Ray.Hershberger@osumc.edu

Abstract:

Background - Familial dilated cardiomyopathy is a genetically heterogeneous disease with >30 known genes. *TTN* truncating variants were recently implicated in a candidate gene study to cause 25% of familial and 18% of sporadic dilated cardiomyopathy (DCM) cases.

Methods and Results - We used an unbiased genome-wide approach employing both linkage analysis and variant filtering across the exome sequences of 48 individuals affected with DCM from 17 families to identify genetic cause. Linkage analysis ranked the *TTN* region as falling under the second highest genome-wide multipoint linkage peak, MLOD 1.59. We identified six *TTN* truncating variants carried by affected with DCM in 7 of 17 DCM families (LOD 2.99); 2 of these 7 families also had novel missense variants segregated with disease. Two additional novel truncating *TTN* variants did not segregate with DCM. Nucleotide diversity at the *TTN* locus, including missense variants, was comparable to five other known DCM genes. The average number of missense variants in the exome sequences from the DCM cases or the ~5,400 cases from the Exome Sequencing Project was ~23 per individual. The average number of *TTN* truncating variants in the Exome Sequencing Project was 0.014 per individual. We also identified a region (chr9q21.11-q22.31) with no known DCM genes with a maximum heterogeneity LOD score of 1.74.

Conclusions - These data suggest that *TTN* truncating variants contribute to DCM cause. However, the lack of segregation of all identified *TTN* truncating variants illustrates the challenge of determining variant pathogenicity even with full exome sequencing.

Key words: genetics, human, genome-wide analysis, dilated cardiomyopathy, exome
Introduction

Whole exome sequencing technologies are rapidly enabling the identification of novel rare variants in patients with cardiomyopathy, but assigning pathogenicity remains challenging. Truncating variants in TTN were recently observed in 25% of familial dilated cardiomyopathy (DCM) cases.1 DCM is genetically heterogeneous with rare variants in over 30 disease genes, including TTN, previously indicated to cause DCM.2,3 Prior to the recent publication of TTN contributing to a major fraction of genetic DCM, the fraction of cases attributable to any single gene ranged from <0.5% to ~6% per disease gene.4

Discovery and incorporation into clinical tests of a single gene accounting for a large fraction of DCM cases could be helpful for presymptomatic diagnosis in at-risk family members, but the clinical translation of this finding is confounded by several factors. First, despite a significant excess of truncating variants in DCM cases, these variants also occur in ~3% of controls.1 This is not unusual in complex trait analysis, where common genetic variants occur more frequently but not exclusively in cases compared to controls, and increase disease risk or susceptibility. However, in the context of DCM, which has been categorized primarily as a rare-variant Mendelian disease with marked locus and allelic heterogeneity,5 it is essential to know which truncating variants are pathogenic. Second, with over 300 exons and >34,000 amino acids, TTN has the largest coding sequence in the genome, and the majority of the general population will have at least one rare (defined as a mean allele frequency <0.5%) missense or truncating variant at this locus. Next Generation Sequencing (NGS) now allows rapid variation analysis of the TTN gene despite its size. However, it relies on an economy of scale, and for a similar cost as sequencing TTN alone, NGS can be used to sequence the entire coding sequence of the genome. This allows DCM patients to be screened for sequence variants in TTN in parallel with all other
known DCM genes and the rest of the coding genome, leading to the third issue: the recent study of TTN truncating variants in DCM\(^1\) used a custom NGS panel specific for TTN, and therefore neither the role of genetic variants in other known DCM genes nor segregating variants in novel DCM genes could be assessed. Detailed examination of TTN truncating variants in the context of all coding variants in known and potentially novel DCM genes is needed to assess variant pathogenicity.

In this study we used exome sequence data from seventeen families, each with three or more members affected with DCM, in an effort to identify a genetic cause of DCM, as each family proband was negative for mutations in the coding regions of 16 DCM genes, as previously reported.\(^6-11\) From these exome sequences we identified several families with TTN truncating variants. To more carefully assess TTN variants as a cause of DCM, we constructed a linkage map of common informative single nucleotide variants (SNVs) from our exome data in all seventeen families and performed linkage analysis across the genome. We hypothesized that if TTN is causative of 25% of DCM, we would observe a significant combined LOD score across our 17 families at this locus compared to the rest of the genome. Second, we evaluated all other unbiased rare variation in the exome data to identify putative DCM causative variants in each family. We describe the variants identified in TTN in the context of other top ranking variants across the exome sequence of each family. Third, we examined the nucleotide diversity at the TTN locus in the 5,400 exome sequences available from the Exome Variant Server\(^12\) to determine if the large amount of variation within this gene is accounted for by size or if the TTN locus is more genetically diverse than other known DCM genes.
Materials and Methods

Subjects

Written, informed consent was obtained from all subjects, and the Institutional Review Boards at the Oregon Health & Science University and the University of Miami approved the study. The investigation included 17 families, each with three or more members affected with DCM, and with each proband already known to be point mutation negative for 16 known DCM genes. Genomic DNA was extracted from whole blood according to a standard salting out procedure, as previously reported. Two-point and multipoint parametric linkage analysis were performed with the Merlin software program. We assumed an affected only model with a disease allele frequency of 0.0001 and penetrance of 0.9. In addition to traditional LOD scores, a HETLOD score resulting from a test of linkage in the presence of genetic heterogeneity was also calculated. A genome-wide linkage map of common informative markers was constructed by identifying all SNV’s present from the exome data that overlap with known SNV’s in 60 unrelated Europeans from the International HapMap. SNV’s with minor allele frequency <1% and/or Mendelian errors within the HapMap were excluded. The remaining markers were then pruned using the PLINK software using pairwise r² <0.1 in sliding windows of 50 SNV’s, moving in intervals of 5 SNV’s. This resulted in a final exome-wide marker set of 4,601 SNV’s. Marker allele frequencies for linkage analysis were determined by the frequency of each SNV in the Exome Sequencing Project (ESP) in the relevant ethnically matched population (either European (n=3,499 individuals) or African American ancestry (n=1,864 individuals).
Exome sequencing and analysis

Exome sequencing was performed at the University of Washington Genome Science Center across seventeen families (48 individuals) with NimbleGen V2 in solution capture and Illumina HiSeq. Sequences were aligned with BWA15 and realignment and single nucleotide and insertion-deletion variants were called with GATK version 1.4, at the Hussman Institute for Human Genomics. Vcf files were then imported into an in-house database, Genomes Management Application (GEMapp) to facilitate storage, variant annotation, querying and analysis. In addition to our exome data, GEMapp was used to store transcriptome data from the left ventricle of four unrelated individuals, two with DCM and two unaffected individuals, as previously published.11 This allowed us to filter variants mapped to genes expressed in heart tissue.

Using GEMapp, we queried each family to determine putative disease-causing variants that met the following criteria: read depth ≥ 5 and quality scores ≥ 40; variants that were either missense, nonsense, splice site, or a coding insertion or deletion, shared across all affected members of a family; frequency $<0.5\%$ in 5,400 exomes from the Exome Variation Server (EVS); have either a Phastcons16 score >0.4 or a GERP17 score >2; expression in our heart transcriptome dataset with Reads Per Kilobase per Million mapped reads, (RPKM) >3. These criteria were defined from our previous work on 197 variants in known DCM genes published as disease-causing and that was analyzed by our group.18 We also excluded filtered variants that were present in all 48 exomes and variants occurring in more than one family that did not segregate with disease status in at least one other family.

Copy number variation

Copy number variation in 48 DCM exomes was also assessed by the Structural Variant Working
Group at the University of Washington, using CoNIFER (Copy Number Inference From Exome Reads, http://conifer.sourceforge.net/).\(^1\)\(^9\) A total of 200 non-DCM exomes and 48 DCM exomes were used. Singular Value Decomposition (SVD) transformation was used to remove systematic bias, removing 8 components. The final SVD-ZRPKM signal was then smoothed and the duplication/deletion breakpoints found using a threshold of ±1.5 SVD-ZRPKM.

Sanger sequencing validation

All variants passing filter criteria and occurring within \(TTN\) were validated with Sanger sequencing and run on a 3130xl as previously published.\(^1\)\(^1\) Primer sequences are shown (Supplementary Table 1). Any additional DNA samples (n=29) from affected and unaffected family members were also sequenced for these variants.

Nucleotide diversity

A total of 316 exons in \(TTN\) were targeted in our exome sequence. To assess the genetic variation at this locus, accounting for the large amount of coding sequence, we used the normalized number of variant sites, \(\theta\), as a measure of nucleotide diversity across the 5,379 exomes available from the Exome Variant Server. \(\theta\) was calculated as described in Cargill et al for all coding sequence and also separately for both missense and truncating variants.\(^2\)\(^0\)

Results

Exome-wide linkage analysis across seventeen families with DCM

The maximum LOD score across the genome and the LOD score at the \(TTN\) locus are shown for each family (Table 1). In those families with \(TTN\) truncating variants identified by exome sequencing analysis, the maximum LOD score achieved across the genome for each family was comparable to the LOD score at the \(TTN\) locus (Table 1). The highest multipoint peak within the genome fell in the region spanning chromosome 9q21.11-q22.31 (hg19:71,862,987-95,840,256),
producing a heterogeneity LOD score of 1.74. Overall, in the seventeen families, the TTN locus was the second highest (HLOD=1.59; Table 2).

Exome sequence analysis from seventeen families with DCM

Our criteria for putative DCM variants identified in the exome sequences was based on defined criteria (Methods) and as previously described.11 The number of shared variants meeting these criteria present in each family ranged from 1-80, (average 28.1, median 24). We had previously reported that of the 197 variants already published as causative of DCM, 16% were present in 2,400 exomes from the Exome Sequencing Project, and of those with functional data (and therefore presumed to be pathogenic variants of very low frequency), the median frequency in the Exome Sequencing Project population was 0.04%.18 Applying this maximum 0.04% frequency criterion to the current exome analysis, the number of shared filtered variants per family ranged from 1-49, (average 16.8, median 15).

CNV analysis using exome data did not identify any shared rare variants (frequency < 1% in the ESP dataset) across these families.

A total of six TTN truncating variants (two frameshift, three nonsense and 1 splice variant that occurred in two DCM families) were identified among the filtered candidates in seven of our 17 families (41%) (Table 3). Our approach to identifying which of these truncating variants were likely disease-causing within these families was to genotype them in additional DNA samples in the extended families where possible to assess segregation of the variant with disease, and we also consider them in the context of the additional shared variants in our filtered lists for each family. We further observed from our linkage data that those families with highly negative LOD scores at the TTN locus had no TTN truncating variants that passed our exome analysis filtering criteria. In addition, we screened against presence in the 1000 genomes data (which is
independent of the EVS dataset). None of the six truncating variants were present in this dataset.

Clinical characteristics families with DCM and segregating TTN variants

The pedigree structures are shown (Figure 1) and the clinical characteristics of relevant family members are provided (Table 4) of the DCM families with segregating TTN variants (Table 1).

Family A. Family A had DNA samples available for three additional members. Sanger sequencing showed that all six family members were heterozygous for the truncating variant. Subject III.3, a female who carried the TTN variant, died at age 69 with mild systolic dysfunction (ejection fraction of 42%) but without left ventricular enlargement (LVE), having suffered an myocardial infarction in her 50’s, and thus confounding assessment of whether the TTN variant, the myocardial infarction, or both contributed to her systolic dysfunction. Two subjects (IV.3, V.1), both mutation carrier’s in their 20’s, had no evidence of DCM.

Family B. In addition to the three samples that had exome sequencing, Family B had DNA samples available from six other family members. Sanger sequencing confirmed the nonsense variant as present in all affected family members. A female obligate carrier (II.2) died of cancer at age 76 without a cardiovascular history. Another female obligate carrier (II.5) had no cardiovascular history at age 70. A male who carried the TTN variant at age 69 (II.6) had only borderline systolic dysfunction without LVE.

Family C. Only three DNA samples were available for this family and were used for exome sequencing. Subject III.3, who died of DCM, was an identical twin by family history and thus may have been an obligate carrier. Another obligate carrier (III.3) had no known DCM but by death certificate died of ventricular tachycardia and coronary artery disease. None of the additional twelve variants passing filtering criteria (eight under more stringent filtering of population frequency <0.05% in the ESP exome dataset) occurred in known DCM or other
cardiomyopathy associated genes.

Family D. This family of European ancestry carried the same *TTN* splice variant identified in Family C. Of the additional 32 variants also identified as putative disease-causing in this family, only one occurred in a known DCM gene, a missense variant in *TTN*, chr2:179,410,975, NM_133378.4, Gly29127Arg.

Family E. This family carried a single base insertion in *TTN* resulting in a frameshift mutation. Of the additional 26 segregating variants also identified in this family, the only variant in a gene with a reported association with hypertrophic cardiomyopathy occurred in *SOS1.*21 One of the affected children (II.2) carried a rare variant in *MYBPC3* inherited from his mother (I.2), previously reported by us as likely disease-causing9 but suggested to be of unknown significance based on a subsequent study;22 we also note that this variant is present at a frequency 0.12% in the EVS, making it more common than many DCM rare variants.18

Family F. A four bp deletion in *TTN* resulted in a frameshift mutation. DNA was available from one additional affected member and three unaffected family members, and the *TTN* variant was confirmed to be present in all four affected members by Sanger sequencing and was not present in the three unaffected members. None of the other 23 segregating variants identified occurred in known cardiomyopathy-associated genes.

Family G. No DNA samples beyond those used for exome sequencing were available to assess segregation in this family. Of the additional 23 variants that segregated, none occurred in other cardiomyopathy-associated genes.

Segregating missense variants at the TTN locus

We also considered the implication of segregating *TTN* missense variants passing our exome filtering pipeline as a class of variants that were not discussed in the recent *TTN* paper.1
Determination of pathogenicity of these variants will be extremely challenging because of the large number of coding exons. In the 5,400 ESP exome datasets, the average number of TTN missense variants per individual was 23.3, ranging 6 to 55. These were comparable results to those observed in the exome sequences of our DCM families, with the average number of TTN missense variants per DCM individual at 22.75, (ranging 11 to 43). Application of our DCM filtering criteria to missense variants in the 5,400 ESP exomes (frequency <0.5% and either a PhastCons score >0.4 OR a GERP score of >2) resulted in an average of 1.91 missense variants per individual (ranging 0 to 23). Five TTN missense variants passed our exome filtering approach (that segregated with all individuals affected with DCM in a family): one each in two DCM families who also had segregating truncating variants (Table 3), and the others in two families, each with high quality candidates in known cardiomyopathy genes so they were not further prioritized. The average number of TTN missense variants without regard to sharing, that is, an analysis of only one individual from each of the 17 families, a less stringent approach and similar to the analysis of all missense TTN variants conducted for the EVS, was 1.88.

Non-segregating, truncating variants

Given the observed excess of TTN truncating variants in both familial and in sporadic DCM versus controls, we thought it also relevant to report the number of non-segregating truncating variants in TTN identified in the exome sequences of these 48 individuals with DCM, as these may be potential susceptibility variants. We observed two non-segregating TTN truncating variants that were validated with Sanger sequencing. First, a C insertion at hg19 chr2:179,426,992 generating a frameshift in one of three family members with DCM who underwent exome sequencing (Family 14, Table 1), and a nonsense variant at hg19 chr2:179,605,218, NM_003319.4 Gln3885stop in two of three family members (Family 17,
Table 1). Neither variant was observed in the 5,400 ESP exome sequences or in the 1000 Genomes data, making them potential susceptibility variants. In the case of the frameshift variant, this family had already been shown to segregate a variant published as disease-causing accompanied by functional data and in Family 14 with the nonsense variant, a total of 43 segregating variants were identified by our exome filtering pipeline (Table 1), none of which were in previously published cardiomyopathy genes.

Nucleotide diversity of TTN

The NimbleGen V2 in solution capture target included 315 discrete exons from six TTN transcripts (NM_001256850.1, NM_133432.3, NM_133378.4, NM_003319.4, NM_133437.3 and NM_133379.3), totaling 110,459 bp coding sequence. Our exome pipeline identified TTN truncating variants in seven DCM families. This could simply be a result of the large number of exons. Hence, we investigated the nucleotide diversity at the TTN locus in a non-DCM population. The Exome Variant Server (EVS) contains annotated exome sequence from 5,379 individuals at the TTN locus totaling 2,425 and 25 discrete missense and nonsense variants, respectively. Across 5,379 EVS individuals there are a total of 125,575 missense alleles and 77 nonsense alleles, averaging 23 and 0.014 per individual, respectively. We calculated the normalized number of variant sites, θ^{20}, accounting for sample size and the number of coding bases in the EVS individuals at the TTN locus to be 2.23×10^{-3} and 2.3×10^{-5} for missense and nonsense variants respectively. The same calculation across five other known DCM genes (MYBPC3, TNNC1, TNNI3, MYH6 and TPM1) in the EVS data gave comparable results to those observed in TTN, (for missense variants, θ ranged from 6.9×10^{-4} at TPM1 to 1.05×10^{-3} at TNNC1 and for truncating variants, θ at TNNC1 and TNNI3 to 1.29×10^{-4} for MYBPC3), suggesting that
the excess of shared truncating variants in our DCM families is not due to the large number of exons alone and that nucleotide diversity at TTN is comparable to other known DCM genes.

Discussion

This is the first independent replication study of TTN truncating variants as frequently involved in the pathogenesis of familial DCM. Herman et al recently identified TTN truncating mutations in 25% of familial DCM and 18% of sporadic DCM, a significant excess compared to 3% of controls.1 The authors concluded that truncating mutations in TTN are a frequent cause of DCM, as all prior reports of unselected patients with DCM of unknown cause ranged from <1% to 5-8%.4 However, 3% of controls in the Herman et al publication1 also were observed to have TTN truncating variants, suggesting that the interpretation of specific TTN truncating variant pathogenicity would be challenging, especially in simplex cases. Analysis across nineteen DCM families segregating rare TTN truncating variants in the Herman et al study1 yielded a combined LOD score of 11.1, providing strong evidence that the truncating variants in those families were pathogenic. However, in that study TTN was sequenced in isolation so that the relevance of the linkage evidence in the TTN region could not be compared to the rest of the genome.

We hypothesized that if rare variants in TTN indeed account for one-quarter of familial DCM, this locus should also be detected using an unbiased genome-wide linkage approach across our 17 DCM families, as they should be enriched for causative variants at this locus, especially since the DCM families in this study were selected for exome sequencing because they were already known to be point mutation negative for 16 other known DCM genes6-11 (with the exception of one family segregating a previously described variant6 in a gene attributing ~0.5% of DCM). Genome-wide linkage analysis yielded the second most significant evidence of
linkage at the *TTN* locus compared to other regions in the genome, which we interpret as evidence of the *TTN* locus in DCM pathogenesis.

Next we identified those nonsense, missense, splice and frameshift variants in the exome sequences, meeting our filtering approach that included conservation and myocardial expression, which segregated with DCM affection status in each family. Seven of 17 families (41%) had segregating *TTN* truncating variants identified in their filtered exome variants. Using common informative SNV’s within the exome sequences, the combined LOD score at the *TTN* locus for these seven families was 2.99, and in each family the maximum LOD score at the *TTN* locus was either the maximum LOD score achieved in that family across the whole exome or comparable to the maximum observed LOD score at any other locus. We interpret these data as replication of *TTN* truncating variants as frequently linked with DCM.

Despite the previous evidence1 and our findings presented here, all which collectively support the concept that *TTN* truncating variants are highly relevant for DCM pathogenesis, determining the pathogenicity of any specific variant remains extremely challenging. We interpret the 2 truncating variants not shared by all affected family members in two families (Families 14 and 17) as unlikely to be causative of DCM. We also note that in the 7 families where all those affected with DCM carried a truncating variant, some unaffected members at older ages also carried the same truncating variant. This observation confounds pedigree analysis even though it is consistent with reduced penetrance, which is commonly observed with familial DCM. Further, the plethora of *TTN* missense variants observed in all individuals, whether from control or DCM cohorts, further complicates *TTN* variant interpretation. The available evidence from the ESP data has shown that most individuals will carry numerous *TTN* missense variants,
some even very rare, and even if such variants segregate with DCM in a family, this may occur as a play of chance. This concept may also apply to truncating variants.

These issues raise two central questions of \textit{TTN} biology in DCM. Which specific variants, whether truncating or missense, play a role in DCM pathogenesis? Do \textit{TTN} variants include causative as well as risk alleles? Titin splicing and titin biology are exceedingly complex,23, 24 and penetrance is well known to be incomplete and expressivity variable in familial DCM,4, 5 so it is possible if not likely that some \textit{TTN} variants, whether missense or truncating, may also modulate penetrance and expressivity in DCM. Addressing these questions will require much larger DCM cohorts with detailed phenotypic data, ideally with knowledge of extended family structure (including presymptomatic DCM), genome-wide sequence data, and comprehensive, insightful analysis of the pathophysiological effects of \textit{TTN} variants.

Though linkage analysis has been less frequently utilized in the GWAS era, our study highlights the importance of coupling linkage information with sequence data. This provides us both a measure of evidence for a cumulative effect of rare variants, since linkage is not compromised by allelic heterogeneity (i.e., multiple rare disease variants within a gene), and an assessment of the evidence in the context of the rest of the genome. Together, linkage analysis and sequencing provide complementary evidence that can improve the efficiency of gene discovery in sequencing studies.

The observation that 7 of 17, or 41%, of families with \textit{TTN} truncating variants that segregated with DCM is higher than the 25% frequency observed in families with DCM the Herman et al study.1 This most likely resulted from a sample bias in our study because our families were already known to be point mutation negative for 16 other known DCM genes, and thus were likely enriched for \textit{TTN} variants.
We also examined TTN missense variants in our seventeen families using an unbiased approach to exome analysis and additional data from >300 exomes with neurological phenotypes collated in our in-house database, GEMapp. Our calculation of nucleotide diversity in the Exome Sequencing Project dataset for this gene suggested that diversity at the TTN locus was comparable to other known DCM genes relative to the number of coding nucleotides. However, the >300 TTN exons resulted in a very large number of missense variants identified in both the exome sequence from individuals with DCM and individuals in the ESP dataset. Two TTN missense variants from two DCM families, both also carrying TTN truncating variants, passed our exome filtering criteria. We considered these two missense variants (Gly29127Arg and Ile2685Val) of unknown significance, as each met our stringent exome filtering criteria and were not present in over 300 other exomes in GEMapp but occurred in Families B and D that also had TTN truncating variants.

We also note that the most highly linked region in this study on chromosome 9q21.1-q22.31 did not contain any known DCM genes and that none of our filtered genes mapped to this region. The positive linkage at this region could be a chance finding. Alternatively, this could represent a region of the genome containing a novel DCM gene missed by our exome pipeline for two possible reasons. Our rare variant exome analysis approach is based on assumptions, based on our previous work.\(^1\)\(^8\) Firstly, we assumed that causative rare variants were missense, nonsense, splice or frameshift and the allele frequency of these variants would be <0.5%. We note here that the majority of known (published) DCM variants are significantly less frequent than 0.5% in the general population\(^1\)\(^8\) but there are examples of known DCM variants with convincing functional data where the variant frequency is very close to this cut-point (CSRP3 Trp4Arg variant\(^2\)\(^5\) has a frequency of 0.35% in European ancestry EVS dataset). Whilst this
variant would have been identified in our pipeline, it is possible that other pathogenic variants
have frequencies slightly greater than this. Secondly, our genome-wide linkage approach could
also have identified regions containing common susceptibility or modifying variants, again that
would not have been detected by our exome analysis approach. We note recent prior evidence of
linkage to congenital heart defects and low atrial rhythm to this region, suggesting the
possibility of cardiovascular modifying variants located here.

In conclusion, our data show that TTN was the only gene with implicated rare variants
that occurred in multiple DCM families, and hence, have replicated the prior finding\(^1\) that TTN
truncating variants do contribute frequently to DCM pathogenesis. We reiterate that TTN
analysis for DCM causation should be considered within the context of the genome. While
interpreting individual TTN truncating or missense variants will remain challenging due to the
complexity of TTN biology, the availability of sequencing data from known DCM genes and
variants at other exomic loci will assist in categorizing the pathogenicity of these variants.

Acknowledgments: We thank all the family members who participated, without whom this
study would not be a success. The authors would like to thank the NHLBI GO Exome
Sequencing Project which produced exome variant calls for comparison: the Lung GO
Sequencing Project (HL-102923), the WHI Sequencing Project (HL-102924), the Broad GO
Sequencing Project (HL-102925), the Seattle GO Sequencing Project (HL-102926) and the Heart
GO Sequencing Project (HL-103010). The authors would like to thank the ESP Family Studies
Project Team: Sek Kathiresan, Jay Shendure, Mike Bamshad, Weiniu Gan, Rebecca Jackson,
Ani Manichaikul, Christopher Newton-Cheh, Debbie Nickerson, Stephen Rich, Jerry Rotter, and
James Wilson.

Funding Sources: This work was supported by NIH awards HL58626 (Dr Hershberger),
HL094976 (Dr Nickerson, Seattle Seq).

Conflict of Interest Disclosures: None.
References:

Table 1: Genome-wide linkage and rare variant exome sequence analysis summary by family.

<table>
<thead>
<tr>
<th>Pedigrees with segregating TTN truncating variants</th>
<th>Family</th>
<th>mlod</th>
<th>hg19 region</th>
<th>TTN mlod</th>
<th>number filtered exome variants (TTN variants)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.178</td>
<td>chr19:57802806-58058739</td>
<td>0.722</td>
<td>1 (TTN Arg13527stop)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.899</td>
<td>chr11:1782594-5625847</td>
<td>0.725</td>
<td>6 (TTN Ser19378stop, Ile2686Val)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.902</td>
<td>chr6:35477032-42666164</td>
<td>0.034</td>
<td>12 (TTN IVS 275+2 T>A)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.602</td>
<td>chr18:6890434-7017322</td>
<td>0.444</td>
<td>34 (TTN IVS 275+2 T>A, Gly29127Arg)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.301</td>
<td>N/A*</td>
<td>0.283</td>
<td>28 (TTN Val28259SerfsX22)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.301</td>
<td>N/A*</td>
<td>0.236</td>
<td>24 (TTN Lys28880AsnfsX8)</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.601</td>
<td>chr11:290816-6891605</td>
<td>0.544</td>
<td>24 (TTN Arg31175stop)</td>
<td></td>
</tr>
<tr>
<td>Other pedigrees without segregating TTN truncating variants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family 8</td>
<td>0.901</td>
<td>chr10:62863518-64597506</td>
<td>-2.173</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Family 9</td>
<td>0.474</td>
<td>chr5:137754695-137426447</td>
<td>N/A</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Family 10</td>
<td>0.601</td>
<td>chr11:62863518-64597506</td>
<td>-N/A</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Family 11</td>
<td>0.301</td>
<td>N/A*</td>
<td>0.296</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Family 12</td>
<td>0.602</td>
<td>chr22:29456733-35660875</td>
<td>N/A</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Family 13</td>
<td>0.301</td>
<td>N/A*</td>
<td>-0.347</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Family 14</td>
<td>0.301</td>
<td>N/A*</td>
<td>-0.305</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Family 15</td>
<td>1.242</td>
<td>chr10:99504630-100219374</td>
<td>N/A</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Family 16</td>
<td>0.301</td>
<td>N/A*</td>
<td>-1.238</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Family 17</td>
<td>0.301</td>
<td>N/A*</td>
<td>-0.66</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

mlod, multipoint lod score across genome; *TTN* mlod, multipoint lod score at *TTN* locus; number filtered exome variants refers to the number top ranking variants from exome pipeline with annotation of all top ranking truncating and missense variants in *TTN*; N/A, not applicable because SNV’s at *TTN* locus were uninformative for linkage. N/A* is not applicable, in that more than one region had the same mlod score. Pedigrees A-G and 8-14 had three and pedigrees 15-17 had two affected family members respectively, who underwent exome sequencing.
Table 2: Top five positive linkage regions in seventeen DCM families

<table>
<thead>
<tr>
<th>chr</th>
<th>hg19 start</th>
<th>hg19 end</th>
<th>maximum HLOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>71,862,987</td>
<td>95,840,256</td>
<td>1.743</td>
</tr>
<tr>
<td>2</td>
<td>174,128,513</td>
<td>215,820,013</td>
<td>1.588</td>
</tr>
<tr>
<td>6</td>
<td>311,938</td>
<td>6,318,795</td>
<td>1.304</td>
</tr>
<tr>
<td>3</td>
<td>336,508</td>
<td>16,268,974</td>
<td>1.11</td>
</tr>
<tr>
<td>5</td>
<td>94,994,339</td>
<td>138,456,815</td>
<td>1.072</td>
</tr>
</tbody>
</table>

HLOD, heterogeneity LOD score. \textit{TNN} locus in bold.
Table 3: TTN filtered variants identified in exome analysis and validated with Sanger sequencing that segregated in families with DCM.

<table>
<thead>
<tr>
<th>hg19 position</th>
<th>Family ID</th>
<th>Variant function class</th>
<th>Phast Cons</th>
<th>GERP</th>
<th>Grantham</th>
<th>additional filtered variants in family</th>
<th>MAF % (EA)</th>
<th>MAF % (AA)</th>
<th>cDNA</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr2:179481235</td>
<td>A: F128</td>
<td>stop-gained</td>
<td>1.00</td>
<td>3.90</td>
<td>N/A</td>
<td>0 (0)</td>
<td>0</td>
<td>0.03</td>
<td>c.40579C>T</td>
<td>Arg13527stop</td>
</tr>
<tr>
<td>chr2:179447693</td>
<td>B: F533</td>
<td>stop-gained</td>
<td>1.00</td>
<td>5.02</td>
<td>N/A</td>
<td>4 (2)</td>
<td>0</td>
<td>0</td>
<td>c.58133C>G</td>
<td>Ser19378stop</td>
</tr>
<tr>
<td>chr2:179424036</td>
<td>C: F27</td>
<td>splice-5</td>
<td>0.99</td>
<td>5.61</td>
<td>N/A</td>
<td>11 (8)</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>IVS 275+2 T>A</td>
</tr>
<tr>
<td>chr2:179424036</td>
<td>D: F40</td>
<td>splice-5</td>
<td>0.99</td>
<td>5.61</td>
<td>N/A</td>
<td>32 (17)</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>IVS 275+2 T>A</td>
</tr>
<tr>
<td>chr2:179413874</td>
<td>E: F2B</td>
<td>frameshift</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>27 (14)</td>
<td>0</td>
<td>0</td>
<td>c.84774insT</td>
<td>Val28259SerfsX22</td>
</tr>
<tr>
<td>chr2:179411904</td>
<td>F: F19</td>
<td>frameshift</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>23 (18)</td>
<td>0</td>
<td>0</td>
<td>c.86640delAGAA</td>
<td>Lys28880AsnfsX8</td>
</tr>
<tr>
<td>chr2:179400115</td>
<td>G: F35</td>
<td>stop-gained</td>
<td>1.00</td>
<td>4.64</td>
<td>N/A</td>
<td>23 (10)</td>
<td>0</td>
<td>0</td>
<td>c.93523C>T</td>
<td>Arg31175stop</td>
</tr>
</tbody>
</table>

Conservation scores are given as PhastCons and GERP. MAF %, % minor allele frequency from 5,379 exomes in Exome Variant Server (EVS), given in European (EA) and African American (AA) populations. The number of additional filtered variants in other genes identified in each family with a TTN variant are given, and in parentheses, number of variants under more stringent filtering criteria of <0.05% in the EVS.
Table 4: Clinical Characteristics

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age at diagnosis, screening or family history information, years</th>
<th>Gender</th>
<th>DCM</th>
<th>ECG/Arrhythmia</th>
<th>LVEDD, mm (Z-score)</th>
<th>LV septum, posterior wall thickness, mm</th>
<th>EF or FS, %</th>
<th>TTN truncating mutation present (yes, no)</th>
<th>Other mutation? (genotype)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedigree A: Arg13527X</td>
<td></td>
</tr>
<tr>
<td>IV-2</td>
<td>42</td>
<td>F</td>
<td>yes</td>
<td>PVCs</td>
<td>56, NA</td>
<td>NA</td>
<td>20</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III-1</td>
<td>43</td>
<td>F</td>
<td>yes</td>
<td></td>
<td>54 (2.44)</td>
<td>NA, 11</td>
<td>40</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III-3</td>
<td>69</td>
<td>F</td>
<td>no</td>
<td>anterior MI</td>
<td>54, NA</td>
<td>11, 10</td>
<td>42</td>
<td>yes</td>
<td>CAD diagnosis at age 69</td>
<td></td>
</tr>
<tr>
<td>III-5</td>
<td>51</td>
<td>M</td>
<td>yes</td>
<td>PVCs, AF</td>
<td>67 (4.04)</td>
<td>NA</td>
<td>35</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-3</td>
<td>27</td>
<td>F</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>history: paroxysmal atrial tachycardia and syncope</td>
<td></td>
</tr>
<tr>
<td>V-1</td>
<td>23</td>
<td>F</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>records documenting normal echocardiogram</td>
<td></td>
</tr>
</tbody>
</table>

Pedigree B: Ser19378X

III-3	29	M	yes	PVCs	56 (1.54)	10, 10	47	yes	TTN Ile2640Val	
II-2	NA	F	no					oblige carrier of TTN Ile2640Val	history: died at 76 from cancer	
II-3	66	M	no					no	history: normal cardiac screening	
II-5	70	F						oblige carrier of TTN Ile2640Val	history: heart attack at age 50-60.	
II-6	64	M	no		56 (1.42)	9, 8	49.5	yes	TTN Ile2640Val	Borderline systolic dysfunction
II-7	62	F	no		42 (-1.15)	10, 10	39 (FS)	no		
III-1	43	M	no	ICD				yes	TTN Ile2640Val	CAD diagnosis at age 43
III-2	47	F	yes	PVCs, bigeminy	64 (5.21)	8, 6.8	21	yes	TTN Ile2640Val	
III-4	36	M	yes	ICD, PVCs	64 (3.43)	9, 10	24.5	yes	TTN Ile2640Val	
Pedigree C: IVS 275+2 T>A

<table>
<thead>
<tr>
<th>Member</th>
<th>Age</th>
<th>Sex</th>
<th>Maternal Status</th>
<th>Clinical Findings</th>
<th>Height</th>
<th>Weight</th>
<th>Years</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>III-1</td>
<td>37</td>
<td>F</td>
<td>yes</td>
<td>NSSTT</td>
<td>68 (5.6)</td>
<td>NA</td>
<td>40</td>
<td>yes</td>
</tr>
<tr>
<td>I-2</td>
<td>NA</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-2</td>
<td>52</td>
<td>F</td>
<td>yes</td>
<td>NSSTT</td>
<td>57 (3.29)</td>
<td>11, 11</td>
<td>22</td>
<td>yes</td>
</tr>
<tr>
<td>II-3</td>
<td>59</td>
<td>M</td>
<td>no</td>
<td>PVCs, LAE, NSSST</td>
<td>73 (4.69)</td>
<td>10, 10</td>
<td>32</td>
<td>yes</td>
</tr>
<tr>
<td>III-2</td>
<td>39</td>
<td>M</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Right deltoid muscle biopsy due to history of muscle weakness revealed congenital type I fiber predominance or chronic neurogenic atrophy with reinnervation.**
- **Obligate carrier history: died at 65 from cancer.**

Pedigree D: IVS 275+2 T>A

<table>
<thead>
<tr>
<th>Member</th>
<th>Age</th>
<th>Sex</th>
<th>Maternal Status</th>
<th>Clinical Findings</th>
<th>Height</th>
<th>Weight</th>
<th>Years</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-4</td>
<td>39</td>
<td>M</td>
<td>yes</td>
<td>AF, cardioversion</td>
<td>66 (3.58)</td>
<td>11, 11</td>
<td>39</td>
<td>TTN Gly29127Arg</td>
</tr>
<tr>
<td>II-3</td>
<td>49</td>
<td>F</td>
<td>yes</td>
<td>PVCs, PACs, MI</td>
<td>58 (3.56)</td>
<td>10, 10</td>
<td>25</td>
<td>TTN Gly29127Arg</td>
</tr>
<tr>
<td>II-5</td>
<td>46</td>
<td>F</td>
<td>yes</td>
<td>NSSTT</td>
<td>53 (2.26)</td>
<td>8, 8</td>
<td>46</td>
<td>TTN Gly29127Arg</td>
</tr>
<tr>
<td>III-1</td>
<td>32</td>
<td>M</td>
<td>no</td>
<td>RBBB, MI</td>
<td>51 (-0.07)</td>
<td>8, 8</td>
<td>41</td>
<td>yes</td>
</tr>
</tbody>
</table>

Pedigree E: Val28259SerfsX22

<table>
<thead>
<tr>
<th>Member</th>
<th>Age</th>
<th>Sex</th>
<th>Maternal Status</th>
<th>Clinical Findings</th>
<th>Height</th>
<th>Weight</th>
<th>Years</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-3</td>
<td>14</td>
<td>M</td>
<td>yes</td>
<td></td>
<td>75 (6.30)</td>
<td>5, 8</td>
<td>13 (FS)</td>
<td>yes</td>
</tr>
<tr>
<td>I-1</td>
<td>44</td>
<td>M</td>
<td>yes</td>
<td>LAHB, MI, NSSTT</td>
<td>62 (3.06)</td>
<td>10, 9</td>
<td>25</td>
<td>MYBPC3 Ala833Thr</td>
</tr>
<tr>
<td>I-2</td>
<td>42</td>
<td>F</td>
<td>no</td>
<td>normal</td>
<td>55 (2.32)</td>
<td>8, 9</td>
<td>60</td>
<td>no</td>
</tr>
<tr>
<td>II-1</td>
<td>20</td>
<td>M</td>
<td>no</td>
<td>normal</td>
<td>60 (2.28)</td>
<td>10, 9</td>
<td>60</td>
<td>yes</td>
</tr>
<tr>
<td>II-2</td>
<td>22</td>
<td>M</td>
<td>yes</td>
<td>AF, ICD</td>
<td>63.5 (3.01)</td>
<td>10, 7</td>
<td>20</td>
<td>MYBPC3 Ala833Thr</td>
</tr>
</tbody>
</table>

- **Heart transplantation.**
Pedigree F: Lys28880AsnfsX8

<table>
<thead>
<tr>
<th>III-1</th>
<th>16</th>
<th>M</th>
<th>yes</th>
<th>AF, NSSTT</th>
<th>52 (0.28)</th>
<th>12, 9</th>
<th>21</th>
<th>yes</th>
<th>cardiomegaly (CXR); heart transplantation. Died post transplant, age 21.</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-1</td>
<td>47</td>
<td>M</td>
<td>no</td>
<td>normal</td>
<td>50 (0.28)</td>
<td>12, 9</td>
<td>21</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>II-2</td>
<td>45</td>
<td>F</td>
<td>yes</td>
<td>NSSTT</td>
<td>51 (1.78)</td>
<td>NA</td>
<td>48</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>II-3</td>
<td>52</td>
<td>M</td>
<td>yes</td>
<td>AF, NSCD, cardioversion</td>
<td>50 (NA)</td>
<td>8, 9</td>
<td>35</td>
<td>yes</td>
<td>Death from non-cardiovascular cause</td>
</tr>
<tr>
<td>II-5</td>
<td>52</td>
<td>M</td>
<td>no</td>
<td>1AVB</td>
<td>50 (-0.22)</td>
<td>9, 10</td>
<td>77</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>II-6</td>
<td>41</td>
<td>F</td>
<td>no</td>
<td>MI, NSSTT</td>
<td>55 (2.97)</td>
<td>6, 8</td>
<td>68</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>III-2</td>
<td>20</td>
<td>M</td>
<td>yes</td>
<td>ICD, tachycardia</td>
<td>60 (2.55)</td>
<td>6, 6</td>
<td>38</td>
<td>yes</td>
<td>heart transplantation</td>
</tr>
<tr>
<td>III-3</td>
<td>25</td>
<td>F</td>
<td>no</td>
<td>normal</td>
<td>51 (0.53)</td>
<td>7, 7</td>
<td>47</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

Pedigree G: Arg31175X

<table>
<thead>
<tr>
<th>II-1</th>
<th>52</th>
<th>M</th>
<th>yes</th>
<th>56 (NA)</th>
<th>NA</th>
<th>10</th>
<th>yes</th>
<th>obligate carrier</th>
<th>By history: no known heart problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-2</td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-4</td>
<td>49</td>
<td>M</td>
<td>yes</td>
<td>LAE, tachycardia, NSSTT</td>
<td>70 (5.04)</td>
<td>12,</td>
<td>FS</td>
<td>17</td>
<td>yes</td>
</tr>
<tr>
<td>III-1</td>
<td>35</td>
<td>M</td>
<td>yes</td>
<td>LAE, tachycardia, NSSTT</td>
<td>69 (5.21)</td>
<td>10,</td>
<td>9</td>
<td>20</td>
<td>yes</td>
</tr>
</tbody>
</table>

1AVB, first degree atrioventricular block; AF, atrial fibrillation; DCM, dilated cardiomyopathy; ECG, electrocardiogram; EF, ejection fraction; FS, fractional shortening; ICD, implantable cardiac defibrillator; LAE, left atrial enlargement; LAHB, left anterior hemiblock; LV, left ventricle; LVEDD, left ventricular end-diastolic dimension; MI, myocardial infarction pattern; NA, not available; NSCD, non-specific conduction delay; NSR, normal sinus rhythm; NSSTT, non-specific ST-T changes; PAC’s, premature atrial contractions; PVC’s, premature ventricular contractions; RBBB, right bundle branch block.
Figure Legend:

Figure 1. Pedigrees of families with DCM. Squares represent males, circles females. Diagonal lines mark deceased individuals. Solid symbols denote DCM. Gray symbols represent any cardiovascular abnormality. Open symbols represent unaffected individuals or individuals with no data available for analysis. The presence or absence of the family’s *TTN* truncating variant is indicated by a + or - symbol, respectively; obligate carriers are noted in parenthesis, (+), unknown zygosity, (?). Individuals who underwent exome sequencing are denoted (exome).
Exome Sequencing and Genome-Wide Linkage Analysis in 17 Families Illustrates the Complex Contribution of TTN Truncating Variants to Dilated Cardiomyopathy

Nadine Norton, Duanxiang Li, Evadnie Rampersaud, Ana Morales, Eden R. Martin, Stephan Zuchner, Shengru Guo, Michael Gonzalez, Dale J. Hedges, Peggy D. Robertson, Niklas Krumm, Deborah A. Nickerson and Ray E. Hershberger

Circ Cardiovasc Genet. published online February 15, 2013;
Circulation: Cardiovascular Genetics is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1942-325X. Online ISSN: 1942-3268

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circgenetics.ahajournals.org/content/early/2013/02/15/CIRCGENETICS.111.000062

Data Supplement (unedited) at:
http://circgenetics.ahajournals.org/content/suppl/2013/02/15/CIRCGENETICS.111.000062.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Genetics can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Genetics is online at:
http://circgenetics.ahajournals.org//subscriptions/
Norton et al, Circulation Cardiovascular Genetics 2013: Exome sequencing and genome-wide linkage analysis in 17 families illustrates the complex contribution of TTN truncating variants to dilated cardiomyopathy.

Further acknowledgements

HeartGO:

Atherosclerosis Risk in Communities (ARIC): NHLBI (N01 HC-55015, N01 HC-55016, N01HC-55017, N01 HC-55018, N01 HC-55019, N01 HC-55020, N01 HC-55021); Cardiovascular Health Study (CHS): NHLBI (N01-1HC-85239, N01-1HC-85079 through N01-1HC-85086, N01-1HC-35129, N01 HC-15103, N01 HC-55222, N01-1HC-75150, N01-1HC-45133, and grant HL080295), with additional support from NINDS and from NIA (AG-023629, AG-15928, AG-20098, and AG-027058); Coronary Artery Risk Development in Young Adults (CARDIA): NHLBI (N01-1HC95095 & N01-HC48047, N01-HC48048, N01-HC48049, and N01-HC48050); Framingham Heart Study (FHS): NHLBI (N01-1HC-25195 and grant R01 NS17950) with additional support from NIA (AG08122 and AG033193); Jackson Heart Study (JHS): NHLBI and the National Institute on Minority Health and Health Disparities (N01 HC-95170, N01 HC-95171 and N01 HC-95172); Multi-Ethnic Study of Atherosclerosis (MESA): NHLBI (N01-HC-95159 through N01-HC-95169 and RR-024156).

Lung GO:

Cystic Fibrosis (CF): Cystic Fibrosis Foundation (GIISON07K0, KNOWL00A0, OBSERV04K0, RDP R026), the NHLBI (R01 HL-068890, R02 HL-095396), NIH National Center for Research Resources (UL1 RR-025014), and the National Human Genome Research Institute (NHGRI) (5R00 HG-004316). Chronic Obstructive Pulmonary Disease (COPDGene): NHLBI (U01 HL-089897, U01 HL-089856), and the COPD Foundation through contributions made to an Industry Advisory Board comprised of AstraZeneca, Boehringer Ingelheim, Novartis, Pfizer, and Sunovian. The COPDGene clinical centers and investigators are available at www.copdgene.org. Acute Lung Injury (ALI): NHLBI (RC2 HL-101779). Lung Health Study (LHS): NHLBI (RC2 HL-066583), the NHGRI (HG-004738), and the NHLBI Division of Lung Diseases (HR-46002). Pulmonary Arterial Hypertension (PAH): NIH (P50 HL-084946, K23 AR-52742), and the NHLBI (F32 HL-083714). Asthma: NHLBI (RC2 HL-101651), and the NIH (HL-077916, HL-69197, HL-76285, M01 RR-07122).

SWISS and ISGS:

Siblings with Ischemic Stroke Study (SWISS): National Institute of Neurological Disorders and Stroke (NINDS) (R01 NS039987); Ischemic Stroke Genetics Study (ISGS): NINDS (R01 NS042733)

WHISP:
Women’s Health Initiative (WHI): The WHI Sequencing Project is funded by the NHLBI (HL-102924) as well as the National Institutes of Health (NIH), U.S. Department of Health and Human Services through contracts N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, and 44221. The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at: http://www.whiscience.org/publications/WHI_investigators_shortlist.pdf

NHLBI GO Exome Sequencing Project

BroadGO
Stacey B. Gabriel (Broad Institute)4, 5, 11, 16, 17, David M. Altshuler (Broad Institute, Harvard Medical School, Massachusetts General Hospital)1, 5, 7, 17, Gonçalo R. Abecasis (University of Michigan)3, 5, 9, 13, 15, 17, Hooman Allayee (University of Southern California)5, Sharon Cresci (Washington University School of Medicine)5, Mark J. Daly (Broad Institute, Massachusetts General Hospital), Paul I. W. de Bakker (Broad Institute, Harvard Medical School, University Medical Center Utrecht)3, 15, Mark A. DePristo (Broad Institute)4, 13, 15, 16, Ron Do (Broad Institute)5, 9, 13, 15, Peter Donnelly (University of Oxford)5, Deborah N. Farlow (Broad Institute)3, 4, 5, 12, 14, 16, 17, Tim Fennell (Broad Institute), Kiran Garimella (University of Oxford)4, 16, Stanley L. Hazen (Cleveland Clinic)5, Youna Hu (University of Michigan)3, 9, 15, Daniel M. Jordan (Harvard Medical School, Harvard University)13, Goo Jun (University of Michigan)13, Sekar Kathiresan (Broad Institute, Harvard Medical School, Massachusetts General Hospital)3, 8, 9, 12, 14, 15, 17, 20, Hyun Min Kang (University of Michigan)9, 13, 16, Adam Kiezun (Broad Institute)5, 13, 15, Guillaume Lettre (Broad Institute, Montreal Heart Institute, Université de Montréal)3, 2, 13, 15, Bingshan Li (University of Michigan)3, Mingyao Li (University of Pennsylvania)5, Christopher H. Newton-Cheh (Broad Institute, Massachusetts General Hospital, Harvard Medical School)3, 8, 15, Sandosh Padmanabhan (University of Glasgow School of Medicine)3, 12, 15, Gina Peloso (Broad Institute, Harvard Medical School, Massachusetts General Hospital)5, Sara Pulit (Broad Institute)13, 15, Daniel J. Rader (University of Pennsylvania)5, David Reich (Broad Institute, Harvard Medical School)15, Muredach P. Reilly (University of Pennsylvania)5, Manuel A. Rivas (Broad Institute, Massachusetts General Hospital)5, Steve Schwartz (Fred Hutchinson Cancer Research Center)3, 12, Laura Scott (University of Michigan)3, David S. Siscovick (University of Washington)5, 1, 25, John A. Spertus (University of Missouri Kansas City)5, Nathaniel O. Stitziel (Brigham and Women's Hospital)15, 15, Nina Stoletzki (Brigham and Women's Hospital, Broad Institute, Harvard Medical School)15, Shamil R. Sunyaev (Brigham and Women's Hospital, Broad Institute, Harvard Medical School)3, 13, 5, 13, 15, Benjamin F. Voight (Broad Institute, Massachusetts General Hospital), Cristen J. Willer (University of Michigan)1, 9, 13, 15

HeartGO
Stephen S. Rich (University of Virginia)2, 4, 7, 8, 9, 11, 14, 15, 17, 18, 31, Ermeg Akylbekova (Jackson State University, University of Mississippi Medical Center)29, Larry D. Atwood* (Boston University)1, 11, 28, Christie M. Ballantyne (Baylor College of Medicine, Methodist DeBakey Heart Center)9, 22, Maja Barbalic (University of Texas Health Science Center Houston)9, 14, 15, 17, 22, R. Graham Barr (Columbia University Medical Center)10, 31, Emelia J. Benjamin (Boston University)14, 20, 25, Joshua Bis (University of Washington)16, 23, Eric Boerwinkle (University of Texas Health Science Center Houston)3, 5, 9, 13, 15, 17, 22, Donald
W. Bowden (Wake Forest University)1, 31, Jennifer Brody (University of Washington)1, 3, 5, 15, 23, Matthew Budoff (Harbor-UCLA Medical Center)31, Greg Burke (Wake Forest University)5, 31, Sarah Buxbaum (Jackson State University)3, 13, 15, 29, Jeff Carr (Wake Forest University)25, 29, 31, Donna T. Chen (University of Virginia)6, 11, Ida Y. Chen (Cedars-Sinai Medical Center)1, 31, Wei-Min Chen (University of Virginia)13, 15, 18, Pat Concannon (University of Virginia)14, Jacy Crosby (University of Texas Health Science Center Houston)22, L. Adrienne Cupples (Boston University)1, 3, 5, 9, 13, 15, 18, 28, Ralph D’Agostino (Boston University)28, Anita L. DeStefano (Boston University)13, 18, 28, Albert Dreisbach (University of Mississippi Medical Center)3, 29, Josée Dupuis (Boston University)1, 28, J. Peter Durda (University of Vermont)15, 23, Jaclyn Ellis (University of North Carolina Chapel Hill)1, Aaron R. Folsom (University of Minnesota)5, 22, Mynam Fornage (University of Texas Health Science Center Houston)13, 18, 25, Caroline S. Fox (National Heart, Lung, and Blood Institute)1, 28, Ervin Fox (University of Mississippi Medical Center)3, 9, 29, Vincent Funari (Cedars-Sinai Medical Center)1, 11, 31, Santhi K. Ganesh (University of Michigan)2, 22, Julius Gardin (Hackensack University Medical Center)25, David Goff (Wake Forest University)25, Ora Gordon (Cedars-Sinai Medical Center)1, 31, Wayne Grody (University of California Los Angeles)11, 31, Myron Gross (University of Minnesota)1, 5, 14, 25, Xiuqing Guo (Cedars-Sinai Medical Center)3, 15, 31, Ira M. Hall (University of Virginia), Nancy L. Heard-Costa (Boston University)11, 28, Susan R. Heckbert (University of Washington)10, 14, 20, 23, Nicholas Heintz (University of Vermont), David M. Herrington (Wake Forest University)5, 31, DeMarc Hickson (Jackson State University, University of Mississippi Medical Center)29, Jie Huang (National Heart, Lung, and Blood Institute)2, 26, Shi–Jen Hwang (Boston University, National Heart, Lung, and Blood Institute)3, 28, David R. Jacobs (University of Minnesota)25, Nancy S. Jenny (University of Vermont)1, 2, 23, Andrew D. Johnson (National Heart, Lung, and Blood Institute)2, 5, 11, 28, Craig W. Johnson (University of Washington)15, 31, Steven Kwaw (University of Pennsylvania)10, 31, Richard Kronmal (University of Washington)31, Raluca Kurz (Cedars-Sinai Medical Center)11, 31, Ethan M. Lange (University of North Carolina Chapel Hill)3, 5, 9, 13, 34, Leslie A. Lange (University of North Carolina Chapel Hill)1, 2, 3, 5, 9, 12, 13, 15, 17, 18, 20, 25, 34, Martin G. Larson (Boston University)3, 15, 28, Mark Lawson (University of Virginia), Cora E. Lewis (University of Alabama at Birmingham)25, 34, Daniel Levy (National Heart, Lung, and Blood Institute)3, 15, 17, 28, Dalin Li (Cedars-Sinai Medical Center)1, 15, 31, Honghuang Lin (Boston University)20, 28, Chunyu Liu (National Heart, Lung, and Blood Institute)3, 26, Jiankang Liu (University of Mississippi Medical Center)1, 29, Kiang Liu (Northwestern University)25, Xiaoming Liu (University of Texas Health Science Center Houston)15, 22, Yongmei Liu (Wake Forest University)2, 5, 31, William T. Longstreth (University of Washington)18, 23, Cay Loria (National Heart, Lung, and Blood Institute)25, Thomas Lumley (University of Auckland)9, 23, Kathryn Lunetta (Boston University)26, Aaron J. Mackey (University of Virginia)16, 18, Rachel Mackey (University of Pittsburgh)1, 23, 31, Ani Manichaikul (University of Virginia)3, 15, 18, 31, Taylor Maxwell (University of Texas Health Science Center Houston)22, Barbara McKnight (University of Washington)15, 23, James B. Meigs (Brigham and Women’s Hospital, Harvard Medical School, Massachusetts General Hospital)1, 28, Alanna C. Morrison (University of Texas Health Science Center Houston)3, 15, 17, Solomon K. Musani (University of Mississippi Medical Center)3, 29, Josyf C. Mychaleckyj (University of Virginia)13, 15, 31, Jennifer A. Nettleton (University of North Carolina Chapel Hill)1, 3, 9, 10, 13, 15, 17, 34, Christopher J. O’Donnell (Massachusetts General Hospital, National Heart, Lung, and Blood Institute)2, 5, 9, 11, 12, 14, 15, 17, 20, 28, Daniel O’Leary (Tufts University School of Medicine)3, 31, Frank Ong (Cedars-Sinai Medical Center)3, 11, 31, Walter Palmas (Columbia University)3, 16, 31, James S. Pankow (University of Minnesota)1, 22, Nathan D. Pankratz (Indiana University School of Medicine)15, 25, Shom
Paul (University of Virginia), Marco Perez (Stanford University School of Medicine), Sharina D. Person (University of Alabama at Birmingham, University of Alabama at Tuscaloosa)25, Joseph Polak (Tufts University School of Medicine)31, Wendy S. Post (Johns Hopkins University)3, 9, 11, 14, 20, 31, Bruce M. Psaty (Group Health Research Institute, University of Washington)3, 5, 9, 11, 14, 15, 23, Aaron R. Quinlan (University of Virginia)18, 19, Leslie J. Raffel (Cedars-Sinai Medical Center)16, 11, 31, Vasan S. Ramachandran (Boston University)3, 28, Alexander P. Reiner (Fred Hutchinson Cancer Research Center, University of Washington)1, 2, 3, 5, 9, 11, 12, 13, 14, 15, 20, 25, 34, Kenneth Rice (University of Washington)15, 23, Jerome I. Rotter (Cedars-Sinai Medical Center)1, 3, 6, 8, 11, 15, 31, Jill P. Sanders (University of Vermont)23, Pamela Schreiner (University of Minnesota)26, Sudha Seshadri (Boston University)15, 28, Steve Shea (Brigham and Women's Hospital, Harvard University)26, Stephen Sidney (Kaiser Permanente Division of Research, Oakland, CA)25, Kevin Silverstein (University of Minnesota)25, David S. Siscovick (University of Washington)5, 1, 25, Nicholas L. Smith (University of Washington)2, 15, 20, 23, Nona Sotoodehnia (University of Washington)3, 15, 23, Asoke Srinivasan (Tougaloo College)29, Herman A. Taylor (Jackson State University, Tougaloo College, University of Mississippi Medical Center)5, 29, Kent Taylor (Cedars-Sinai Medical Center)31, Fridtjof Thomas (University of Texas Health Science Center Houston)3, 22, Russell P. Tracy (University of Vermont)5, 9, 11, 12, 14, 15, 17, 20, 23, Michael Y. Tsai (University of Minnesota)9, 31, Kelly A. Volcik (University of Texas Health Science Center Houston)22, Christina L Wassel (University of California San Diego)9, 15, 31, Karol Watson (University of California Los Angeles)31, Gina Wei (National Heart, Lung, and Blood Institute)26, Wendy White (Tougaloo College)29, Kerri L. Wiggins (University of Vermont)23, Jemma B. Wilk (Boston University)10, 28, O. Dale Williams (Florida International University)25, Gregory Wilson (Jackson State University)29, James G. Wilson (University of Mississippi Medical Center)1, 2, 5, 8, 9, 11, 12, 14, 17, 20, 29, Phillip Wolf (Boston University)28, Neil A. Zakai (University of Vermont)2, 23

ISGS and SWISS

John Hardy (Reta Lila Weston Research Laboratories, Institute of Neurology, University College London)18, James F. Meschia (Mayo Clinic)18, Michael Nalls (National Institute on Aging)2, 18, Stephen S. Rich (University of Virginia)18, Andrew Singleton (National Institute on Aging)18, Brad Worrall (University of Virginia)18

LungGO

Michael J. Bamshad (Seattle Children's Hospital, University of Washington)4, 6, 7, 8, 10, 11, 13, 15, 17, 27, Kathleen C. Barnes (Johns Hopkins University)2, 10, 12, 14, 15, 17, 20, 24, 30, 32, Ibrahim Abdulhamid (Children's Hospital of Michigan)27, Frank Accurso (University of Colorado)27, Ran Anbar (Upstate Medical University)27, Terri Beaty (Johns Hopkins University)24, 30, Abigail Bingham (University of Washington)13, 15, 27, Phillip Black (Children's Mercy Hospital)27, Eugene Bleecker (Wake Forest University)32, Kati Buckingham (University of Washington)27, Anne Marie Cairns (Maine Medical Center)27, Wei-Min Chen (University of Virginia)13, 15, 18, Daniel Caplan (Emory University)27, Barbara Chatfield (University of Utah)27, Aaron Chidekel (A.I. DuPont Institute Medical Center)27, Michael Cho (Brigham and Women's Hospital, Harvard Medical School)13, 15, 24, David C. Christiani (Massachusetts General Hospital)21, James D. Crapo (National Jewish Health)24, 30, Julia Crouch (Seattle Children's Hospital)6, Denise Daley (University of British Columbia)30, Anthony Dang (University of North Carolina Chapel Hill)26, Hong Dang (University of North Carolina Chapel Hill)26, Alicia De Paula (Ochsner Health System)27, Joan DeCelie-Germana (Schneider Children's Hospital)27, Allen Dozor (New York Medical College, Westchester Medical Center)27, Mitch Drumm (University of North
Carolina Chapel Hill)26, Maynard Dyson (Cook Children’s Med. Center)27, Julia Emerson (Seattle Children’s Hospital, University of Washington)27, Mary J. Emond (University of Washington)10, 13, 15, 17, 27, Thomas Ferkol (St. Louis Children’s Hospital, Washington University School of Medicine)27, Robert Fink (Children’s Medical Center of Dayton)27, Cassandra Foster (Johns Hopkins University)30, Deborah Froh (University of Virginia)27, Li Gao (Johns Hopkins University)24, 30, 32, William Gershman (Children’s Hospital of Wisconsin)27, Ronald L. Gibson (Seattle Children’s Hospital, University of Washington)10, 27, Elizabeth Godwin (University of North Carolina Chapel Hill)26, Magdalen Gondor (All Children’s Hospital Cystic Fibrosis Center)27, Hector Gutierrez (University of Alabama at Birmingham)27, Nadia N. Hansel (Johns Hopkins University, Johns Hopkins University School of Public Health)10, 15, 30, Paul M. Hassoun (Johns Hopkins University)10, 14, 32, Peter Hiatt (Texas Children’s Hospital)27, John E. Hokanson (University of Colorado)24, Michelle Howenstine (Indiana University, Riley Hospital for Children)27, Laura K. Hummer (Johns Hopkins University)32, Jamshed Kanga (University of Kentucky)27, Yoonhee Kim (National Human Genome Research Institute)24, 32, Michael R. Knowles (University of North Carolina Chapel Hill)10, 26, Michael Konstan (Rainbow Babies & Children’s Hospital)27, Thomas Lahiri (Vermont Children’s Hospital at Fletcher Allen Health Care)27, Nan Laird (Harvard School of Public Health)24, Christoph Lange (Harvard School of Public Health)24, Lin Lin (Harvard Medical School)21, Xihong Lin (Harvard School of Public Health)21, Tin L. Louie (University of Washington)13, 15, 27, David Lynch (National Jewish Health)24, Barry Make (National Jewish Health)24, Thomas R. Martin (University of Washington, VA Puget Sound Medical Center)10, 21, Steve C. Mathai (Johns Hopkins University)32, Rasika A. Mathias (Johns Hopkins University)10, 13, 15, 30, 32, John McNamara (Children’s Hospitals and Clinics of Minnesota)27, Sharon McNamara (Seattle Children’s Hospital)27, Deborah Meyers (Wake Forest University)33, Susan Millard (DeVos Children’s Butterworth Hospital, Spectrum Health Systems)27, Peter Mogayzel (Johns Hopkins University)27, Richard Moss (Stanford University)27, Tanda Murray (Johns Hopkins University)30, Dennis Nielson (University of California at San Francisco)27, Blakeslee Noyes (Cardinal Glennon Children’s Hospital)27, Wanda O’Neal (University of North Carolina Chapel Hill)26, David Orenstein (Children’s Hospital of Pittsburgh)27, Brian O’Sullivan (University of Massachusetts Memorial Health Care)27, Rhonda Pace (University of North Carolina Chapel Hill)26, Peter Pare (St. Paul’s Hospital)30, H. Worth Parker (Dartmouth-Hitchcock Medical Center, New Hampshire Cystic Fibrosis Center)27, Mary Ann Passero (Rhode Island Hospital)27, Elizabeth Perkett (Vanderbilt University)27, Adrienne Prestridge (Children's Memorial Hospital)27, Nicholas M. Rafaels (Johns Hopkins University)30, Bonnie Ramsey (Seattle Children’s Hospital, University of Washington)27, Elizabeth Regan (National Jewish Health)24, Clement Ren (University of Rochester)27, George Retsh-Bogart (University of North Carolina Chapel Hill)27, Michael Rock (University of Wisconsin Hospital and Clinics)27, Antony Rosen (Johns Hopkins University)32, Margaret Rosenfeld (Seattle Children’s Hospital, University of Washington)27, Ingo Ruczinski (Johns Hopkins University School of Public Health)13, 15, 30, Andrew Sanford (University of British Columbia)30, David Schaeffer (Nemours Children's Clinic)27, Cindy Sell (University of North Carolina Chapel Hill)26, Daniel Sheehan (Children's Hospital of Buffalo)27, Edwin K. Silverman (Brigham and Women’s Hospital, Harvard Medical School)24, 30, Don Sin (Children’s Medical Center of Dayton)30, Terry Spencer (Elliot Health System)27, Jackie Stonebraker (University of North Carolina Chapel Hill)26, Holly K. Tabor (Seattle Children's Hospital, University of Washington)6, 10, 11, 17, 27, Laurie Varlotta (St. Christopher’s Hospital for Children)27, Candelaria I. Vergara (Johns Hopkins University)30, Robert Weiss30, Fred Wigley (Johns Hopkins University)32, Robert A. Wise (Johns Hopkins University)30, Fred A. Wright (University of North
Carolina Chapel Hill)26, Mark M. Wurfel (University of Washington)10, 14, 21, Robert Zanni (Monmouth Medical Center)27, Fei Zou (University of North Carolina Chapel Hill)26

\textbf{SeattleGO}

Deborah A. Nickerson (University of Washington)3, 4, 5, 7, 8, 9, 11, 15, 17, 18, 19, Mark J. Rieder (University of Washington)4, 11, 15, 16, 17, 19, Phil Green (University of Washington), Jay Shendure (University of Washington)1, 8, 14, 16, 17, Joshua M. Akey (University of Washington)13, 14, 15, Michael J. Bamshad (Seattle Children's Hospital, University of Washington)4, 6, 7, 8, 10, 11, 13, 15, 17, 27, Carlos D. Bustamante (Stanford University School of Medicine)3, 13, 15, David R. Crosslin (University of Washington)2, 9, Evan E. Eichler (University of Washington)19, P. Keolu Fox2, 9, Wenqing Fu (University of Washington)13, Adam Gordon (University of Washington)14, Simon Gravel (Stanford University School of Medicine)13, 15, Gail P. Jarvik (University of Washington)9, 15, Jill M. Johnsen (Puget Sound Blood Center, University of Washington)2, Mengyuan Kan (Baylor College of Medicine)13, Eimear E. Kenny (Stanford University School of Medicine)3, 13, 15, Jeffrey M. Kidd (Stanford University School of Medicine)13, 15, Fremiet Lara-Garduno (Baylor College of Medicine)15, Suzanne M. Leal (Baylor College of Medicine)1, 13, 15, 16, 17, 19, 20, Dajiang J. Liu (Baylor College of Medicine)13, 15, Sean McGee (University of Washington)13, 15, 19, Timothy D. O'Connor (University of Washington)13, Bryan Paeper (University of Washington)16, Peggy D. Robertson (University of Washington)4, Joshua D. Smith (University of Washington)4, 16, 19, Jeffrey C. Staples (University of Washington), Jacob A. Tennessen (University of Washington)13, Emily H. Turner (University of Washington)16, Gao Wang (Baylor College of Medicine)1, 13, 20, Qian Yi (University of Washington)4

\textbf{WHISP}

Rebecca Jackson (Ohio State University)1, 2, 4, 5, 8, 12, 14, 15, 17, 18, 20, 34, Kari North (University of North Carolina Chapel Hill)1, 3, 9, 10, 13, 15, 17, 14, Ulrike Peters (Fred Hutchinson Cancer Research Center)1, 2, 3, 5, 12, 13, 14, 15, 16, 17, 18, 19, 34, Christopher S. Carlson (Fred Hutchinson Cancer Research Center, University of Washington)1, Garnet Anderson (Fred Hutchinson Cancer Research Center)34, Hoda Anton-Culver (University of California at Irvine)34, Themistocles L. Assimes (Stanford University School of Medicine)5, 9, 11, 34, Paul L. Auer (Fred Hutchinson Cancer Research Center)1, 2, 3, 5, 11, 12, 13, 15, 16, 18, 34, Shirley Beresford (Fred Hutchinson Cancer Research Center)34, Chris Bizon (University of North Carolina Chapel Hill)3, 9, 13, 15, 34, Henry Black (Rush Medical Center)34, Robert Brunner (University of Nevada)34, Robert Brzyski (University of Texas Health Science Center San Antonio)34, Dale Burwen (National Heart, Lung, and Blood Institute WHI Project Office)34, Bette Caan (Kaiser Permanente Division of Research, Oakland, CA)34, Cara L. Carty (Fred Hutchinson Cancer Research Center)18, 34, Rowan Chlebowski (Los Angeles Biomedical Research Institute)34, Steven Cummings (University of California at San Francisco)34, J. David Curb* (University of Hawaii)9, 18, 34, Charles B. Eaton (Brown University, Memorial Hospital of Rhode Island)12, 34, Leslie Ford (National Heart, Lung, and Blood Institute WHI Project Office)34, Nora Franceschini (University of North Carolina Chapel Hill)2, 3, 9, 10, 15, 34, Stephanie M. Fullerton (University of Washington)6, 11, 34, Margery Gass (University of Cincinnati)34, Nancy Geller (National Heart, Lung, and Blood Institute WHI Project Office)34, Gerardo Heiss (University of North Carolina Chapel Hill)5, 34, Barbara V. Howard (Howard University, MedStar Research Institute)34, Li Hsu (Fred Hutchinson Cancer Research Center)17, 13, 15, 18, 34, Carolyn M. Hutter (Fred Hutchinson Cancer
Research Center), John Ioannidis (Stanford University School of Medicine), Shuo Jiao (Fred Hutchinson Cancer Research Center), Karen C. Johnson (University of Tennessee Health Science Center), Charles Kooperberg (Fred Hutchinson Cancer Research Center), Lewis Kuller (University of Pittsburgh), Andrea LaCroix (Fred Hutchinson Cancer Research Center), Kamakshi Lakshminarayan (University of Minnesota), Dorothy Lane (State University of New York at Stony Brook), Ethan M. Lange (University of North Carolina Chapel Hill), Leslie A. Lange (University of North Carolina Chapel Hill), Norman Lasser (University of Medicine and Dentistry of New Jersey), Erin LeBlanc (Kaiser Permanente Center for Health Research, Portland, OR), Cora E. Lewis (University of Alabama at Birmingham), Kuo-Ping Li (University of North Carolina Chapel Hill), Marian Limacher (University of Florida), Dan-Yu Lin (University of North Carolina Chapel Hill), Benjamin A. Logsdon (Fred Hutchinson Cancer Research Center), Shari Ludlam (National Heart, Lung, and Blood Institute WHI Project Office), JoAnn E. Manson (Brigham and Women’s Hospital, Harvard School of Public Health), Karen Margolis (University of Minnesota), Lisa Martin (George Washington University Medical Center), Joan McGowan (National Heart, Lung, and Blood Institute WHI Project Office), Keri L. Monda (Amgen, Inc.), Jane Morley Kotchen (Medical College of Wisconsin), Lauren Nathan (University of California Los Angeles), Judith Ockene (Fallon Clinic, University of Massachusetts), Mary Jo O’Sullivan (University of Miami), Lawrence S. Phillips (Emory University), Ross L. Prentice (Fred Hutchinson Cancer Research Center), Alexander P. Reiner (Fred Hutchinson Cancer Research Center, University of Washington), Jennifer G. Robinson (University of Iowa), Jacques E. Rossouw (National Heart, Lung, and Blood Institute, National Heart, Lung, and Blood Institute WHI Project Office), Keri C. Taylor (University of Louisville), Cynthia A. Thomson (University of Arizona), Timothy A. Thornton (University of Washington), Linda Van Horn (Northwestern University), Mara Vitolins (Wake Forest University), Jean Wactawski-Wende (University of Buffalo), Robert Wallace (University of Iowa), Sylvia Wassertheil-Smoller (Boston University), Donglin Zeng (University of North Carolina Chapel Hill).

NHLBI GO ESP Project Team

Deborah Applebaum-Bowden (National Heart, Lung, and Blood Institute), Michael Feolo (National Center for Biotechnology Information), Weiniu Gan (National Heart, Lung, and Blood Institute), Dina N. Paltoo (National Heart, Lung, and Blood Institute), Michael S. Simon (Wayne State University), Marcia L. Stefanick (Stanford University School of Medicine), Evan Stein (Medical Research Labs), Hua Tang (Stanford University), Kira C. Taylor (University of Louisville), Cynthia A. Thomson (University of Arizona), Timothy A. Thornton (University of Washington), Linda Van Horn (Northwestern University), Mara Vitolins (Wake Forest University), Jean Wactawski-Wende (University of Buffalo), Robert Wallace (University of Iowa), Sylvia Wassertheil-Smoller (Boston University), Donglin Zeng (University of North Carolina Chapel Hill).

*deceased

ESP Groups

1Anthropometry Project Team, 2Blood Count/Hematology Project Team, 3Blood Pressure Project Team, 4Data Flow Working Group, 5Early MI Project Team, 6ELSI Working Group, 7Executive Committee, 8Family Study Project Team, 9Lipids Project Team.
Lung Project Team, Personal Genomics Project Team, Phenotype and Harmonization Working Group, Population Genetics and Statistical Analysis Working Group, Publications and Presentations Working Group, Quantitative Analysis Ad Hoc Task Group, Sequencing and Genotyping Working Group, Steering Committee, Stroke Project Team, Structural Variation Working Group, Subclinical/Quantitative Project Team

ESP Cohorts

Acute Lung Injury (ALI), Atherosclerosis Risk in Communities (ARIC), Cardiovascular Health Study (CHS), Chronic Obstructive Pulmonary Disease (COPDGene), Coronary Artery Risk Development in Young Adults (CARDIA), Cystic Fibrosis (CF), Early Pseudomonas Infection Control (EPIC), Framingham Heart Study (FHS), Jackson Heart Study (JHS), Lung Health Study (LHS), Multi-Ethnic Study of Atherosclerosis (MESA), Pulmonary Arterial Hypertension (PAH), Severe Asthma Research Program (SARP), Women’s Health Initiative (WHI)